首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 94 毫秒
1.
Genes of the major histocompatibility complex (MHC) form a vital part of the vertebrate immune system and play a major role in pathogen resistance. The extremely high levels of polymorphism observed at the MHC are hypothesised to be driven by pathogen‐mediated selection. Although the exact nature of selection remains unclear, three main hypotheses have been put forward; heterozygote advantage, negative frequency‐dependence and fluctuating selection. Here, we report the effects of MHC genotype on survival in a cohort of semi‐natural red junglefowl (Gallus gallus) that suffered severe mortality as a result of an outbreak of the disease coccidiosis. The cohort was followed from hatching until 250 days of age, approximately the age of sexual maturity in this species, during which time over 80% of the birds died. We show that on average birds with MHC heterozygote genotypes survived infection longer than homozygotes and that this effect was independent of genome‐wide heterozygosity, estimated across microsatellite loci. This MHC effect appeared to be caused by a single susceptible haplotype (CD_c) the effect of which was masked in all heterozygote genotypes by other dominant haplotypes. The CD_c homozygous genotype had lower survival than all other genotypes, but CD_c heterozygous genotypes had survival probabilities equal to the most resistant homozygote genotype. Importantly, no heterozygotes conferred greater resistance than the most resistant homozygote genotype, indicating that the observed survival advantage of MHC heterozygotes was the product of dominant, rather than overdominant processes. This pattern and effect of MHC diversity in our population could reflect the processes ongoing in similarly small, fragmented natural populations.  相似文献   

2.
Pathogen‐mediated selection is thought to maintain the extreme diversity in the major histocompatibility complex (MHC) genes, operating through the heterozygote advantage, rare‐allele advantage and fluctuating selection mechanisms. Heterozygote advantage (i.e. recognizing and binding a wider range of antigens than homozygotes) is expected to be more detectable when multiple pathogens are considered simultaneously. Here, we test whether MHC diversity in a wild population of European badgers (Meles meles) is driven by pathogen‐mediated selection. We examined individual prevalence (infected or not), infection intensity and co‐infection of 13 pathogens from a range of taxa and examined their relationships with MHC class I and class II variability. This population has a variable, but relatively low, number of MHC alleles and is infected by a variety of naturally occurring pathogens, making it very suitable for the investigation of MHC–pathogen relationships. We found associations between pathogen infections and specific MHC haplotypes and alleles. Co‐infection status was not correlated with MHC heterozygosity, but there was evidence of heterozygote advantage against individual pathogen infections. This suggests that rare‐allele advantages and/or fluctuating selection, and heterozygote advantage are probably the selective forces shaping MHC diversity in this species. We show stronger evidence for MHC associations with infection intensity than for prevalence and conclude that examining both pathogen prevalence and infection intensity is important. Moreover, examination of a large number and diversity of pathogens, and both MHC class I and II genes (which have different functions), provide an improved understanding of the mechanisms driving MHC diversity.  相似文献   

3.
The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host–parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC–parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations.  相似文献   

4.
A major goal of evolutionary biology is to understand how selection drives local adaptation. For example, the major histocompatibility complex (MHC) plays an important role in the immune system, and high levels of MHC variation are thought to be a form of adaptation in natural populations. Individual MHC composition may influence parasite resistance via advantages associated with 1) heterozygosity, because heterozygotes recognize a broader range of different antigens than homozygotes (heterozygote advantage); 2) highly variable amino acid sequences in MHC alleles, allowing individuals to bind a broader spectrum of parasite-derived peptides (divergent-alleles advantage, a mechanistic variant of the heterozygote advantage model); or 3) specific MHC alleles (rare allele advantage or frequency dependent selection). We investigated relationships between gastrointestinal nematode burden and both adaptive immune gene variability (MHC class II DRB) and neutral microsatellites in free-living gray mouse lemurs (Microcebus murinus) native to a dry deciduous forest population in western Madagascar to test these hypotheses. The individual MHC composition was related to parasite infestation. Specific MHC alleles were involved in parasite resistance and the presence of common alleles negatively influenced infestation intensity. We found no support for the heterozygote advantage hypothesis, but we did find support for the divergent-MHC allele advantage hypothesis: Individuals with very divergent MHC alleles carried fewer and less intense nematode infestations than individuals with more similar alleles in the more variable dry deciduous forest population. These results indicate that intestinal parasites are important selection pressures under natural conditions and suggest that different selection mechanisms are not mutually exclusive. In contrast, we detected no association between neutral overall individual genetic diversity (measured via 17 microsatellites) and parasite load. Finally, we investigated the ubiquity of parasite-driven selection mechanisms by comparing our results with a previous study of a mouse lemur population from the climatically different littoral forest in southeastern Madagascar, ca. 500 km away. This revealed that different specific MHC alleles were involved in parasite resistance in the 2 habitats, showing that gene-parasite associations are not consistent between populations.  相似文献   

5.

Background  

The extreme polymorphism that is observed in major histocompatibility complex (MHC) genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage) and/or by rare MHC alleles (negative frequency-dependent selection). The Ewens-Watterson test (EW) is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately.  相似文献   

6.
Major histocompatibility (MHC) molecules are encoded by extremely polymorphic genes and play a crucial role in vertebrate immunity. Natural selection favors MHC heterozygous hosts because individuals heterozygous at the MHC can present a larger diversity of peptides from infectious pathogens than homozygous individuals. Whether or not heterozygote advantage is sufficient to account for a high degree of polymorphism is controversial, however. Using mathematical models we studied the degree of MHC polymorphism arising when heterozygote advantage is the only selection pressure. We argue that existing models are misleading in that the fitness of heterozygotes is not related to the MHC alleles they harbor. To correct for this, we have developed novel models in which the genotypic fitness of a host directly reflects the fitness contributions of its MHC alleles. The mathematical analysis suggests that a high degree of polymorphism can only be accounted for if the different MHC alleles confer unrealistically similar fitnesses. This conclusion was confirmed by stochastic simulations, including mutation, genetic drift, and a finite population size. Heterozygote advantage on its own is insufficient to explain the high population diversity of the MHC.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

7.
In vertebrate animals, genes of the major histocompatibility complex (MHC) determine the set of pathogens to which an individual's adaptive immune system can respond. MHC genes are extraordinarily polymorphic, often showing elevated nonsynonymous relative to synonymous sequence variation and sharing presumably ancient polymorphisms between lineages. These patterns likely reflect pathogen‐mediated balancing selection, for example, rare‐allele or heterozygote advantage. Such selection is often reinforced by disassortative mating at MHC. We characterized exon 2 of MHC class II, corresponding to the hypervariable peptide‐binding region, in song sparrows (Melospiza melodia). We compared nonsynonymous to synonymous sequence variation in order to identify positively selected sites; assessed evidence for trans‐species polymorphisms indicating ancient balancing selection; and compared MHC similarity of socially mated pairs to expectations under random mating. Six codons showed elevated ratios of nonsynonymous to synonymous variation, consistent with balancing selection, and we characterized several alleles similar to those occurring in at least four other avian families. Despite this evidence for historical balancing selection, mated pairs were significantly more similar at MHC than were randomly generated pairings. Nonrandom mating at MHC thus appears to partially counteract, not reinforce, pathogen‐mediated balancing selection in this system. We suggest that in systems where individual fitness does not increase monotonically with MHC diversity, assortative mating may help to avoid excessive offspring heterozygosity that could otherwise arise from long‐standing balancing selection.  相似文献   

8.
It is often suggested that heterozygosity at major histocompatibility complex (MHC) loci confers enhanced resistance to infectious diseases (heterozygote advantage, HA, hypothesis), and overdominant selection should contribute to the evolution of these highly polymorphic genes. The evidence for the HA hypothesis is mixed and mainly from laboratory studies on inbred congenic mice, leaving the importance of MHC heterozygosity for natural populations unclear. We tested the HA hypothesis by infecting mice, produced by crossbreeding congenic C57BL/10 with wild ones, with different strains of Salmonella, both in laboratory and in large population enclosures. In the laboratory, we found that MHC influenced resistance, despite interacting wild-derived background loci. Surprisingly, resistance was mostly recessive rather than dominant, unlike in most inbred mouse strains, and it was never overdominant. In the enclosures, heterozygotes did not show better resistance, survival, or reproductive success compared to homozygotes. On the contrary, infected heterozygous females produced significantly fewer pups than homozygotes. Our results show that MHC effects are not masked on an outbred genetic background, and that MHC heterozygosity provides no immunological benefits when resistance is recessive, and can actually reduce fitness. These findings challenge the HA hypothesis and emphasize the need for studies on wild, genetically diverse species.  相似文献   

9.
Alan Hastings 《Genetics》1985,109(1):215-228
The equilibrium structure of two-locus, two-allele models with very large selfing rates is found using perturbation techniques. For free recombination, r = 1/2, the following results hold. If the heterozygotes do not have at least an approximate 30% advantage in fitness relative to homozygotes, a stable equilibrium with all alleles present is possible only if all of the homozygote fitnesses differ at most by approximately the outcrossing rate, t, and all stable polymorphic equilibria have disequilibrium values, D, that are at most on the order of the outcrossing rate. Once the heterozygote fitnesses are above the threshold, there are stable equilibria possible with D near its maximum possible value. The results show that the observed disequilibria in highly selfed plant populations are not likely to result from selection leading to an equilibrium.  相似文献   

10.
Leaf shape is one of the most variable plant traits. Previous work has provided much indirect evidence that leaf-shape variation is adaptive and that leaf shape influences thermoregulation, water balance, and resistance to natural enemies. Nevertheless, there is little direct evidence that leaf shape actually affects plant fitness. In this study, we first demonstrate that populations of the ivyleaf morning glory, Ipomoea hederacea, in North and South Carolina are frequently polymorphic at a locus that influences leaf shape. We then employ several field experiments to show that this polymorphism is subject to selection. In two of the experiments, at different sites, heterozygotes enjoyed a fitness advantage over both homozygotes. At a third site, in one year directional selection favored lobed leaves, whereas in a second year the pattern of fitnesses was consistent with similar directional selection or heterozygote superiority. Computer simulations of heterozygote advantage under the high selfing rates of I. hederacea indicate that balancing selection of the magnitude observed can by itself stabilize the polymorphism, although spatially and temporally variable selection may also contribute to its long-term maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号