首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coagulation cascade proteases and tissue fibrosis   总被引:7,自引:0,他引:7  
Fibrotic disorders of the liver, kidney and lung are associated with excessive deposition of extracellular matrix proteins and ongoing coagulation-cascade activity. In addition to their critical roles in blood coagulation, thrombin and the immediate upstream coagulation proteases, Factors Xa and VIIa, influence numerous cellular responses that may play critical roles in subsequent inflammatory and tissue repair processes in vascular and extravascular compartments. The cellular effects of these proteases are mediated via proteolytic activation of a novel family of cell-surface receptors, the protease-activated receptors (PAR-1, -2, -3 and -4). Although thrombin is capable of activating PAR-1, -3 and -4, there is accumulating in vitro evidence that the profibrotic effects of thrombin are predominantly mediated via PAR-1. Factor Xa is capable of activating PAR-1 and PAR-2, but its mitogenic effects for fibroblasts are similarly mediated via PAR-1. These proteases do not exert their profibrotic effects directly, but act via the induction of potent fibrogenic mediators, such as platelet-derived growth factor and connective tissue growth factor. In vivo studies using proteolytic inhibitors, PAR-1 antagonists and PAR-1-deficient mice have provided evidence that coagulation proteases play a key role in tissue inflammation and in a number of vascular pathologies associated with hyperproliferation of smooth muscle cells. More recently, coagulation proteases have also been shown to play a role in the pathogenesis of fibrosis but the relative contribution of their cellular versus their procoagulant effects awaits urgent evaluation in vivo. These studies will be informative in determining the potential application of PAR-1 antagonists as antifibrotic agents.  相似文献   

2.
Induction of IL-6 release from human T cells by PAR-1 and PAR-2 agonists   总被引:4,自引:0,他引:4  
Proteinase-activated receptors (PAR) have been recognized as playing an important role in inflammation and immune response. However, little is known of the expression and function of PAR on human T cells. In this study, the expression of PAR on highly purified human T cells was determined and the secretion of IL-6 from cultured T cells in response to serine proteinases and agonist peptides of PAR was examined. The results showed that T cells express PAR-1, PAR-2 and PAR-3 proteins and genes. Thrombin, trypsin and tryptase, but not elastase, were able to stimulate concentration-dependent secretion of IL-6 from T cells following a 16 h incubation period. The specific inhibitors of thrombin, trypsin and tryptase inhibited the actions of these proteinases on T cells, indicating that the enzymatic activity is essential for their actions. Agonist peptides of PAR SFLLR-NH2, TFLLRN-NH2 and SLIGKV-NH2, but not TFRGAP-NH2, GYPGQV-NH2 and AYPGKF-NH2, are also capable of inducing IL-6 release from T cells. In conclusion, induction of IL-6 secretion from T cells by thrombin, trypsin and tryptase is probably through the activation of PAR, suggesting that serine proteinases are involved in the regulation of immune response of the body.  相似文献   

3.
Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR1). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR1-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR1-specific agonists and inhibitors were used to demonstrate that PAR1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR1 and not PAR2. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.  相似文献   

4.
Daubie V  De Decker R  Nicaise C  Pochet R 《FEBS letters》2007,581(14):2611-2615
The cells responsible for bone formation express protease-activated receptors. Although serine protease thrombin has been shown to elicit functional responses in bone cells that impact on cell survival and alkaline phosphatase activity, nothing is known about tissue factor, factor VIIa, and factor Xa, the serine proteases that act upstream of thrombin in the coagulation cascade. This paper demonstrates that tissue factor is expressed in the osteoblast-like cell line SaOS-2 and, that tissue factor in a factor VIIa-bound complex induces a transient intracellular Ca(2+) increase through protease-activated receptor-2. In SaOS-2 cells, factor Xa induced a sustained intracellular Ca(2+) response, as does SLIGRL, a PAR2-activating peptide, and PAR-1-dependent cell viability.  相似文献   

5.
6.
Protease-activated receptors (PARs) mediate cellular responses to a variety of extracellular proteases. The four known PARs constitute a subgroup of the family of seven-transmembrane domain G protein-coupled receptors and activate intracellular signalling pathways typical for this family of receptors. Activation of PARs involves proteolytic cleavage of the extracellular domain, resulting in formation of a new N terminus, which acts as a tethered ligand. PAR-1, -3, and -4 are relatively selective for activation by thrombin whereas PAR-2 is activated by a variety of proteases, including trypsin and tryptase. Recent studies in mice genetically incapable of expressing specific PARs have defined roles for PAR-1 in vascular development, and for PAR-3 and -4 in platelet activation, which plays a fundamental role in blood coagulation. PAR-1 has also been implicated in a variety of other biological processes including inflammation, and brain and muscle development. Responses mediated by PAR-2 include contraction of intestinal smooth muscle, epithelium-dependent smooth muscle relaxation in the airways and vasculature, and potentiation of inflammatory responses. The area of PAR research is rapidly expanding our understanding of how cells communicate and control biological functions, in turn increasing our knowledge of disease processes and providing potential targets for therapeutic intervention.  相似文献   

7.
Protease-activated receptors (PARs) mediate cellular responses to a subset of extracellular proteases, including blood coagulation factors and proteases produced by inflammatory cells. Cells in bone, cartilage and muscle exhibit cell type-specific expression patterns and functional responses for the different PARs. Activators of PAR-1 include thrombin, and activators of PAR-2 include trypsin and tryptase; PARs-3 and -4 are also receptors for thrombin. Thrombin stimulates PAR-1-mediated proliferative responses in osteoblasts, chondrocytes and myoblasts, and in developing muscle, PAR-1 activation by thrombin appears to mediate activity-dependent polyneuronal synapse reduction. In bone, activation of PAR-2 leads to inhibition of osteoblast-mediated osteoclast differentiation induced by hormones or cytokines, and in muscle, PAR-2 activation leads to stimulation of myoblast proliferation. Although there is some evidence for a role for PARs expressed by cells of the musculoskeletal system at specific stages of development, their major role appears to be in protecting the tissues from the destructive effects of inflammation and promoting regeneration. This review discusses the regulation of cell function in the musculoskeletal system by receptor-mediated responses to proteases. Expression patterns of PARs, the circumstances in which PAR activators are likely to be present, functional responses of PAR activation, and responses to thrombin for which receptors have not yet been identified are considered.  相似文献   

8.
Thrombin as a Regulator of Inflammation and Reparative Processes in Tissues   总被引:10,自引:0,他引:10  
Activation of blood coagulation and thrombin formation accompany inflammation, wound healing, atherogenesis, and other processes induced by endothelial injury. Systems of hemostasis and inflammation play an important role in the pathogenesis of acute coronary syndromes. This paper reviews thrombin functions involved in its interaction with PAR family receptors, activation of platelets, endothelial cells, leukocytes, smooth muscle cells, and mast cells. Mechanisms of regulatory effects of thrombin on mast cells associated with nitric oxide release are discussed.  相似文献   

9.
10.
Endothelial cells react to factor Xa and thrombin by proinflammatory responses. It is unclear how these cells respond under physiological conditions, where the serine proteases factor VIIa, factor Xa and thrombin are all simultaneously generated, as in tissue factor-driven blood coagulation. We studied the Ca(2+) signaling and downstream release of interleukins (ILs), induced by these proteases in monolayers of human umbilical vein endothelial cells. In single cells, factor Xa, but not factor VIIa, complexed with tissue factor, evoked a greatly delayed, oscillatory Ca(2+) response, which relied on its catalytic activity and resembled that of SLIGRL, a peptide specifically activating the protease-activated receptor 2 (PAR2). Thrombin even at low concentrations evoked a rapid, mostly non-oscillating Ca(2+) response through activation of PAR1, which reinforced the factor Xa response. The additive Ca(2+) signals persisted, when factor X and prothrombin were activated in situ, or in the presence of plasma that was triggered to coagulate with tissue factor. Further, thrombin reinforced the factor Xa-induced production of IL-8, but not of IL-6. Both interleukins were produced in the presence of coagulating plasma. In conclusion, under coagulant conditions, factor Xa and thrombin appear to contribute in different and additive ways to the Ca(2+)-mobilizing and proinflammatory reactions of endothelial cells. These data provide first evidence that these serine proteases trigger distinct signaling modules in endothelium that is activated by plasma coagulation.  相似文献   

11.
The primary function of the coagulation cascade is to promote haemostasis and limit blood loss in response to tissue injury. However, it is now recognized that the physiological functions of the coagulation cascade extend beyond blood coagulation and that this cascade plays a pivotal role in influencing inflammatory and tissue repair responses via the activation of their signalling responses, the proteinase-activated receptors (PARs). Consequently, uncontrolled coagulation activity and PAR signalling contributes to the pathophysiology of several conditions, including thrombosis, arthritis, cancer, kidney disease, and acute and chronic lung injury. Much of the work thus far has focused on the role of thrombin-mediated signalling in the pathophysiology of these conditions. However, recent evidence suggests that coagulation proteinases upstream of thrombin, including factor Xa (FXa), may also signal via PARs and thus induce cellular effects independent of thrombin generation. These studies have highlighted a novel and important role for FXa signalling in influencing proinflammatory and pro-fibrotic effects following tissue injury. This article will provide an overview of FXa as a central proteinase of the coagulation cascade and will review more recent evidence that FXa signalling may contribute to inflammation and tissue remodelling. The novel opportunities that this may present for therapeutic intervention will also be highlighted.  相似文献   

12.
Endothelial membrane-bound thrombomodulin is a high affinity receptor for thrombin to inhibit coagulation. We previously demonstrated that the thrombin-thrombomodulin complex restrains cell proliferation mediated through protease-activated receptor (PAR)-1. We have now tested the hypothesis that thrombomodulin transduces a signal to activate the endothelial nitric-oxide synthase (NOS3) and to modulate G protein-coupled receptor signaling. Cultured human umbilical vein endothelial cells were stimulated with thrombin or a mutant of thrombin that binds to thrombomodulin and has no catalytic activity on PAR-1. Thrombin and its mutant dose dependently activated NO release at cell surface. Pretreatment with anti-thrombomodulin antibody suppressed NO response to the mutant and to low thrombin concentration and reduced by half response to high concentration. Thrombin receptor-activating peptide that only activates PAR-1 and high thrombin concentration induced marked biphasic Ca2+ signals with rapid phosphorylation of PLC(beta3) and NOS3 at both serine 1177 and threonine 495. The mutant thrombin evoked a Ca2+ spark and progressive phosphorylation of Src family kinases at tyrosine 416 and NOS3 only at threonine 495. It activated rapid phosphatidylinositol-3 kinase-dependent NO synthesis and phosphorylation of epidermal growth factor receptor and calmodulin kinase II. Complete epidermal growth factor receptor inhibition only partly reduced the activation of phospholipase Cgamma1 and NOS3. Prestimulation of thrombomodulin did not affect NO release but reduced Ca2+ responses to thrombin and histamine, suggesting cross-talks between thrombomodulin and G protein-coupled receptors. This is the first demonstration of an outside-in signal mediated by the cell surface thrombomodulin receptor to activate NOS3 through tyrosine kinase-dependent pathway. This signaling may contribute to thrombomodulin function in thrombosis, inflammation, and atherosclerosis.  相似文献   

13.
Coagulation proteases and human cancer   总被引:7,自引:0,他引:7  
Tumours are capable of activating blood coagulation through the expression of procoagulant molecules such as tissue factor, cancer procoagulant and hepsin. Initiation of the clotting cascade results in the generation of the activated serine proteases factor VIIa, factor Xa and thrombin. These proteases act via protease-activated receptors and tissue factor to alter gene expression, thereby modulating tumour cell growth, invasion, metastasis and angiogenesis.  相似文献   

14.
Key hemostatic serine proteases such as thrombin and activated protein C (APC) are signaling molecules controlling blood coagulation and inflammation, tissue regeneration, neurodegeneration, and some other processes. By interacting with protease-activated receptors (PARs), these enzymes cleave a receptor exodomain and liberate new amino acid sequence known as a tethered ligand, which then activates the initial receptor and induces multiple signaling pathways and cell responses. Among four PAR family members, APC and thrombin mainly act via PAR1, and they trigger divergent effects. APC is an anticoagulant with antiinflammatory and cytoprotective activity, whereas thrombin is a protease with procoagulant and proinflammatory effects. Hallmark features of APC-induced effects result from acting via different pathways: limited proteolysis of PAR1 localized in membrane caveolae with coreceptor (endothelial protein C receptor) as well as its targeted proteolytic action at a receptor exodomain site differing from the canonical thrombin cleavage site. Hence, a new noncanonical tethered PAR1 agonist peptide (PAR1-AP) is formed, whose effects are poorly investigated in inflammation, tissue regeneration, and neurotoxicity. In this review, a concept about a role of biased agonism in effects exerted by APC and PAR1-AP via PAR1 on cells involved in inflammation and related processes is developed. New evidence showing a role for a biased agonism in activating PAR1 both by APC and PAR1-AP as well as induction of antiinflammatory and cytoprotective cellular responses in experimental inflammation, wound healing, and excitotoxicity is presented. It seems that synthetic PAR1 peptide-agonists may compete with APC in controlling some inflammatory and neurodegenerative diseases.  相似文献   

15.
Tissue factor mediates inflammation   总被引:7,自引:0,他引:7  
The role of tissue factor (TF) in inflammation is mediated by blood coagulation. TF initiates the extrinsic blood coagulation that proceeds as an extracellular signaling cascade by a series of active serine proteases: FVIIa, FXa, and thrombin (FIIa) for fibrin clot production in the presence of phospholipids and Ca2+. TF upregulation resulting from its enhanced exposure to clotting factor FVII/FVIIa often manifests not only hypercoagulable but also inflammatory state. Coagulant mediators (FVIIa, FXa, and FIIa) are proinflammatory, which are largely transmitted by protease-activated receptors (PAR) to elicit inflammation including the expression of tissue necrosis factor, interleukins, adhesion molecules (MCP-1, ICAM-1, VCAM-1, selectins, etc.), and growth factors (VEGF, PDGF, bFGF, etc.). In addition, fibrin, and its fragments are also able to promote inflammation. In the event of TF hypercoagulability accompanied by the elevations in clotting signals including fibrin overproduction, the inflammatory consequence could be enormous. Antagonism to coagulation-dependent inflammation includes (1) TF downregulation, (2) anti-coagulation, and (3) PAR blockade. TF downregulation and anti-coagulation prevent and limit the proceeding of coagulation cascade in the generation of proinflammatory coagulant signals, while PAR antagonists block the transmission of such signals. These approaches are of significance in interrupting the coagulation-inflammation cycle in contribution to not only anti-inflammation but also anti-thrombosis for cardioprotection.  相似文献   

16.
Proteinase activated receptors (PAR 1-4) are membrane receptors with a unique way of activation by proteinases like thrombin, trypsin and matrix metalloproteinases which lead to a specific cellular response. To evaluate the significance of expression and co-expression of PAR in cancer we performed a survey on published data. A Pubmed literature search on “PAR, thrombin, cancer” was performed and 46 publications were selected for systematic review based on the availability of information on tumor type, material type, detection method and specification of positive cases. PAR-1 was found in 77.3% of malignant samples (n = 678), PAR-2 in 79.5% (n = 592), PAR-3 in 12.6% (n = 87) and PAR-4 in 54.9% (n = 153). PAR-1 and -2 were present in adenocarcinomas, melanomas, osteosarcomas, glioblastomas, meningiomas, leukaemias and squamous cell carcinomas. Presence of PAR-3 was limited to kidney and liver cancer. The data on PAR-4 expression was inconclusive. Those studies analysing PAR-1 and PAR-2 reported coexpression of the two receptors. PAR-1 and -2 are widely expressed in human tumors suggesting an important role in tumorigenesis and providing potential targets for therapy. PAR-3 and PAR-4 are less frequently detectable, their expression and potential role in tumorigenesis require further investigation.  相似文献   

17.
Heparin activates the primary serpin inhibitor of blood clotting proteinases, antithrombin, both by an allosteric conformational change mechanism that specifically enhances factor Xa inactivation and by a ternary complex bridging mechanism that promotes the inactivation of thrombin and other target proteinases. To determine whether the factor Xa specificity of allosterically activated antithrombin is encoded in the reactive center loop sequence, we attempted to switch this specificity by mutating the P6-P3' proteinase binding sequence excluding P1-P1' to a more optimal thrombin recognition sequence. Evaluation of 12 such antithrombin variants showed that the thrombin specificity of the serpin allosterically activated by a heparin pentasaccharide could be enhanced as much as 55-fold by changing P3, P2, and P2' residues to a consensus thrombin recognition sequence. However, at most 9-fold of the enhanced thrombin specificity was due to allosteric activation, the remainder being realized without activation. Moreover, thrombin specificity enhancements were attenuated to at most 5-fold with a bridging heparin activator. Surprisingly, none of the reactive center loop mutations greatly affected the factor Xa specificity of the unactivated serpin or the several hundred-fold enhancement in factor Xa specificity due to activation by pentasaccharide or bridging heparins. Together, these results suggest that the specificity of both native and heparin-activated antithrombin for thrombin and factor Xa is only weakly dependent on the P6-P3' residues flanking the primary P1-P1' recognition site in the serpin-reactive center loop and that heparin enhances serpin specificity for both enzymes through secondary interaction sites outside the P6-P3' region, which involve a bridging site on heparin in the case of thrombin and a previously unrecognized exosite on antithrombin in the case of factor Xa.  相似文献   

18.
The serine protease thrombin stimulates proliferation in osteoblasts, but decreases alkaline phosphatase (ALP) activity, a marker of osteoblast differentiation. Three thrombin receptors have been identified, protease activated receptor (PAR)-1, PAR-3 and PAR-4; we have previously demonstrated that mouse osteoblasts express PAR-1 and PAR-4. The effect of thrombin on osteoblast proliferation and differentiation was studied to determine which of the thrombin receptors is responsible for the primary effects of thrombin. Primary mouse calvarial osteoblasts from PAR-1-null and wild-type mice, and synthetic peptides that specifically activate PAR-1 (TFFLR-NH2) and PAR-4 (AYPGKF-NH2) were used. Both the PAR-1-activating peptide and thrombin stimulated incorporation of 5-bromo-2'-deoxyuridine (two to four-fold, P < 0.001) and reduced alkaline phosphatase activity (approximately three-fold, P < 0.05) in cells from wild-type mice. The PAR-4-activating peptide, however, had no effect on either alkaline phosphatase activity or proliferation in these cells. Neither thrombin nor PAR-4-activating peptide was able to affect osteoblast proliferation or alkaline phosphatase activity in cells isolated from PAR-1-null mice. The results demonstrate that thrombin stimulates proliferation and inhibits differentiation of osteoblasts through activation of PAR-1. No other thrombin receptor appears to be involved in these effects.  相似文献   

19.
In the nervous system, protease-activated receptors (PARs), which are activated by thrombin and other extracellular proteases, are expressed widely at both neuronal and glial levels and have been shown to be involved in several brain pathologies. As far as the glial receptors are concerned, previous experiments performed in rat hippocampus showed that expression of PAR-1, the prototypic member of the PAR family, increased in astrocytes both in vivo and in vitro following treatment with trimethyltin (TMT). TMT is an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. In the present experiments, the authors extended their investigation to microglial cells. In particular, by 7 days following TMT intoxication in vivo, confocal immunofluorescence revealed an evident PAR-1-related specific immunoreactivity in OX-42-positive microglial cells of the CA3 and hilus hippocampal regions. In line with the in vivo results, when primary rat microglial cells were treated in vitro with TMT, a strong upregulation of PAR-1 was observed by immunocytochemistry and Western blot analysis. These data provide further evidence that PAR-1 may be involved in microglial response to brain damage.  相似文献   

20.
Thrombin signaling in the brain: the role of protease-activated receptors   总被引:19,自引:0,他引:19  
Signaling by the protease thrombin has started to be appreciated in cell biology, especially since the gene for protease-activated receptor-1 (PAR-1) has been cloned. Apart from the central role of thrombin in blood coagulation and wound healing, thrombin also regulates cellular functions in a large variety of cells through PAR-1, PAR-3 and PAR-4. Receptors are activated by a proteolytic cleavage mechanism via G protein-coupled signaling pathways. Accumulating evidence shows that thrombin changes the morphology of neurons and astrocytes, induces glial cell proliferation, and even exerts, depending on the concentration applied, either cytoprotective or cytotoxic effects on neural cells. These effects may be mediated, through either distinct or overlapping signal transduction cascades, by activation of PARs. This review focuses on the underlying signaling events initiated by thrombin in neuronal and glial cells, to summarize our understanding of the intracellular signaling machinery linking thrombin receptors to their potential physiological and pathological functions in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号