首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
植物谷胱甘肽过氧化物酶(GPX)研究进展   总被引:1,自引:0,他引:1  
逆境胁迫会诱导植物产生过多的活性氧(ROS),引起氧化胁迫,严重影响其生长发育。相应地,植物为适应诸多不良环境会产生多种抗氧化剂、抗氧化酶等协调氧化还原平衡,其中谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)是植物体内重要的抗氧化酶之一。对近年来植物中GPX的结构、亚细胞定位、酶催化底物特点及作用研究进展进行综述,并对未来可能的研究方向进行展望。  相似文献   

2.
谷胱甘肽过氧化物酶(glutathione peroxidase, GPX)是动植物体内一种重要的抗氧化酶,它能够清除机体逆境胁迫而产生的过氧化氢和脂质过氧化物,使机体进行正常生长发育,因此解析丹参GPX的氨基酸序列,并与其它植物进行比较,为丹参GPX基因的后续研究提供重要参考。采用生物信息学的方法,在丹参基因组库中找到8个GPX基因,并对其进行生物信息学分析。8个GPX基因有不同的等电点和相对分子量,而二级结构存在相似特征;序列比对与系统发生分析表明,8个基因都具有3个保守结构域以及3个保守的催化残基;除Sm GPX4、At GPX4和Zm GPX02,Sm GPX8与At GPX8处于系统进化树的同一分支外,其它基因与玉米和拟南芥GPX基因的亲缘关系较远;Sm GPX1-2、Sm GPX6-1、Sm GPX6-2、Sm GPX8主要在叶片中表达,而Sm GPX1-1主要在花中表达,具有组织特异性。本研究为进一步了解丹参谷胱甘肽过氧化物酶的基本功能奠定了基础,为开展植物抵御氧化胁迫研究提供了理论依据。  相似文献   

3.
植物谷胱甘肽的生物合成及其生物学功能   总被引:5,自引:0,他引:5  
谷胱甘肽(glutathione,GSH)是硫酸根还原同化途径中主要的含硫非蛋白终端产物,在生物中以还原型谷胱甘肽(reduced glutathione,GSH)和氧化型谷胱甘肽(oxidized glutathione,GSSG)存在。因其在植物体中的广泛存在和独特的还原能力得到广泛关注。本文从谷胱甘肽在植物体内的生物合成,谷胱甘肽的区划、运输和降解以及在非生物胁迫条件下的生物学功能等方面论述了近年来国内外对谷胱甘肽的研究进展。  相似文献   

4.
植物耐冷性分子机理的研究进展   总被引:23,自引:2,他引:21  
近年来对植物耐冷性分子机理的研究不断深入。主要体现在以下4个方面:植物的冷敏感性可以通过调节膜脂的不饱和脂肪酸水平得到调控,调节的途径是通过酰脂去饱和酶和甘油-3-磷酸酰基转移酶的作用;利用转基因技术在植物中超表达抗氧化酶基因,如编码SOD、APX、CAT和GR等的基因,可望提高耐冷性;植物低温逆境信号转导的研究表明,ABA不仅是重要的低温逆境信号,而且可调节冷害下基因的表达,Ca^2 是一个主要的第二信使,蛋白激酶途径也参与了植物冷害的信号转导;低温诱导的蛋白或酶类主要有脱水蛋白和热稳定蛋白。  相似文献   

5.
王国莉  郭振飞 《植物学报》2003,20(6):671-679
近年来对植物耐冷性分子机理的研究不断深入。主要体现在以下4个方面:植物的冷敏感性可以通过调节膜脂的不饱和脂肪酸水平得到调控,调节的途径是通过酰脂去饱和酶和甘油-3-磷酸酰基转移酶的作用;利用转基因技术在植物中超表达抗氧化酶基因,如编码SOD、 APX、CAT和GR等的基因,可望提高耐冷性;植物低温逆境信号转导的研究表明,ABA不仅是重要的低温逆境信号,而且可调节冷害下基因的表达,Ca2+是一个主要的第二信使,蛋白激酶途径也参与了植物冷害的信号转导;低温诱导的蛋白或酶类主要有脱水蛋白和热稳定蛋白。  相似文献   

6.
海藻糖代谢调控真菌生长、发育及致病性,为了进一步研究海藻糖代谢在谷子弯孢病菌中的功能,对海藻糖酶基因及其启动子进行了克隆.根据植物病原真菌海藻糖酶基因的保守序列设计简并引物,扩增得到海藻糖酶基因同源序列.通过RACE技术,首次在谷子弯孢病菌中克隆得到了海藻糖酶基因(ClTRE)全长cDNA序列.序列分析表明,该基因最大开放阅读框为2037 bp,编码679个氨基酸;二级结构预测表明,该蛋白含约40.48%的α螺旋,12.99%的延伸串,6.5%的β转角,40.03%的不规则卷曲;蛋白保守结构域分析发现其含有海藻糖酶特有的保守位点,与其他植物病原真菌中海藻糖酶基因有51%-86%同源性;利用SignalP3.0软件预测谷子弯孢海藻糖酶蛋白具有信号肽.通过染色体步移技术克隆得到其上游启动子序列,利用TFSEARCH软件分析含有多个与逆境胁迫相关的顺式作用元件,初步推测该基因与逆境胁迫相关.谷子弯孢病菌ClTRE基因及其启动子的克隆,为进一步研究该基因在病菌致病中作用以及以该基因为靶位点的化学防控奠定基础.  相似文献   

7.
维生素C过氧化物酶(ascorbate peroxidase,APX)是植物体内的重要酶系,是植物AsA-GSH氧化还原途径的重要组分,是清除H2O2(特别是叶绿体中的H2O2)的关键酶.本文综述了维生素C过氧化物酶表达调控方面的研究进展,包括逆境(干旱胁迫、空气污染、微量元素缺乏、离子胁迫、过度光强、照射以及盐胁迫等)与APX的表达调控、植物细胞程序性死亡(PCD)与APX的表达调控、植物生长发育与APX的表达调控、植物进化与APX表达调控等.植物体内的APX基因包括基质和类囊体两类,不同的APX基因序列存在一定差异,本文还综述了这两类APX基因在植物方面的分离和克隆进展情况,同时对APX基因的遗传转化进行了简要回顾,最后指出了APX今后的研究方向.  相似文献   

8.
植物多胺代谢途径研究进展   总被引:6,自引:0,他引:6  
多胺是一类小分子生物活性物质,广泛存在于生物体内,与植物的生长发育、衰老及抗逆性都有着密切的联系。目前,在植物中的多胺合成途径已经基本揭示,其生理作用在分子水平上逐步得到阐明。对多胺合成突变体和各种转基因植物的研究也使得人们更深入地了解了多胺以及其合成代谢相关酶在植物生长发育等生理过程中的重要作用。以下概述了植物多胺代谢途径,重点综述了代谢途径中各基因的功能及遗传操作的最新进展,并对将来的研究方向尤其是相关基因在植物抗逆境 (包括生物和非生物逆境) 基因工程方面的应用作了讨论。  相似文献   

9.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

10.
二氧化硫胁迫导致拟南芥防护基因表达改变   总被引:4,自引:0,他引:4  
仪慧兰  李利红  仪民 《生态学报》2009,29(4):1682-1687
研究SO2熏气对拟南芥细胞中mRNA和蛋白质表达的影响,分析植株对逆境胁迫的响应机制.结果表明,30 mg·m-3 SO2 熏气72 h后拟南芥地上组织中差异表达1倍以上的基因有494个,其中抗氧化酶、谷胱甘肽硫转移酶(GST)、硫氧还蛋白等多种与逆境生理关系密切的基因表达上调;2.5~30 mg·m-3 SO2 熏气可导致超氧化物岐化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)和GST的活性诱导性增高,SOD、CAT同工酶谱带特征改变.研究结果表明,SO2 胁迫能够诱导拟南芥中防护基因在mRNA和蛋白质表达水平的改变,这些基因的差异性表达可能对逆境生理过程有益.  相似文献   

11.
Lipid peroxide‐derived reactive carbonyl species (RCS), generated downstream of reactive oxygen species (ROS), are critical damage‐inducing species in plant aluminum (Al) toxicity. In mammals, RCS are scavenged primarily by glutathione (reduced form of glutathione, GSH), but in plant Al stress, contribution of GSH to RCS detoxification has not been evaluated. In this study, Arabidopsis plants overexpressing the gene AtGR1 (accession code At3g24170), encoding glutathione reductase (GR), were generated, and their performance under Al stress was examined. These transgenic plants (GR‐OE plants) showed higher GSH levels and GSH/GSSG (oxidized form of GSH) ratio, and an improved Al tolerance as they suffered less inhibition of root growth than wild‐type under Al stress. Exogenous application of 4‐hydroxy‐2‐nonenal, an RCS responsible for Al toxicity in roots, markedly inhibited root growth in wild‐type plants. GR‐OE plants suffered significantly smaller inhibition, indicating that the enhanced GSH level increased the capacity of RCS detoxification. The generation of H2O2 due to Al stress in GR‐OE plants was lower by 26% than in wild‐type. Levels of various RCS, such as malondialdehyde, butyraldehyde, phenylacetaldehyde, (E)‐2‐heptenal and n‐octanal, were suppressed by more than 50%. These results indicate that high levels of GSH and GSH/GSSG ratio by GR overexpression contributed to the suppression of not only ROS, but also RCS. Thus, the maintenance of GSH level by overexpressing GR reinforces dual detoxification functions in plants and is an efficient approach to enhance Al tolerance.  相似文献   

12.
Fungi that can reduce elemental sulfur to sulfide are widely distributed, but the mechanism and physiological significance of the reaction have been poorly characterized. Here, we purified elemental sulfur-reductase (SR) and cloned its gene from the elemental sulfur-reducing fungus Fusarium oxysporum. We found that NADPH-glutathione reductase (GR) reduces elemental sulfur via glutathione as an intermediate. A loss-of-function mutant of the SR/GR gene generated less sulfide from elemental sulfur than the wild-type strain. Its growth was hypersensitive to elemental sulfur, and it accumulated higher levels of oxidized glutathione, indicating that the GR/glutathione system confers tolerance to cytotoxic elemental sulfur by reducing it to less harmful sulfide. The SR/GR reduced polysulfide as efficiently as elemental sulfur, which implies that soluble polysulfide shuttles reducing equivalents to exocellular insoluble elemental sulfur and generates sulfide. The ubiquitous distribution of the GR/glutathione system together with our findings that GR-deficient mutants derived from Saccharomyces cerevisiae and Aspergillus nidulans reduced less sulfur and that their growth was hypersensitive to elemental sulfur indicated a wide distribution of the system among fungi. These results indicate a novel biological function of the GR/glutathione system in elemental sulfur reduction, which is distinguishable from bacterial and archaeal mechanisms of glutathione- independent sulfur reduction.  相似文献   

13.
Our previous studies have demonstrated that application of glyphosate caused oxidative events in young pea and wheat plants. In this work, the changes in the endogenous level of glutathione (total and oxidized) and the activities of glutathione reductase (GR) and glutathione S-transferase (GST) after treatment with glyphosate were studied in pea plants (Pisum sativum L., cv. Skinado). Glyphosate was applied in two ways: (1) by leaf spraying with 10 mM solution; and (2) in nutrient medium as 0.01 mM solution. Measurements were made in both leaves and roots. Root and leaf treatments provoked the increase in both total and oxidized glutathione contents. Both types of herbicide application caused activation of GR in treated organs. Slight increase was detected also in untreated roots. It was found that glyphosate application to leaves provoked strong enhancement in the GST activity in leaves, while its root application stimulated the enzyme activity in the roots. We observed the higher GST activity in the organ directly treated with herbicide. Furthermore, we suggested that the activated isoforms of GST(s) participated in detoxification of hydrogen peroxide and lipid peroxides.  相似文献   

14.
The cellular roles of glutathione reductase (GR) in the reactive oxygen species (ROS)-induced apoptosis were studied using the HepG2 cells transfected with GR. The overexpression of GR caused a marked enhancement in reduced and oxidized glutathione (GSH/GSSG) ratio, and significantly decreased ROS levels in the stable transfectants. Hydrogen peroxide (H2O2), under the optimal condition for apoptosis, significantly decreased cellular viability and total GSH content, and rather increased ROS level, apoptotic percentage and caspase-3 activity in the mock-transfected cells. However, hydrogen peroxide could not largely generate these apoptotic changes in cellular viability, ROS level, apoptotic percentage, caspase-3 activity and total GSH content in the cells overexpressing GR. Taken together, GR may play a protective role against oxidative stress.  相似文献   

15.
To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.  相似文献   

16.
Thiol‐based redox‐regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin‐dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione‐mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo‐lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild‐type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.  相似文献   

17.
One approach to understanding the Reactive Oxygen Species (ROS)-scavenging systems in plant stress tolerance is to manipulate the levels of antioxidant enzyme activities. In this study, we expressed in the chloroplast three such enzymes: dehydroascorbate reductase (DHAR), glutathione-S-transferase (GST) and glutathione reductase (GR). Homoplasmic chloroplast transformants containing either DHAR or GST, or a combination of DHAR:GR and GST:GR were generated and confirmed by molecular analysis. They exhibited the predicted changes in enzyme activities, and levels or redox state of ascorbate and glutathione. Progeny of these plants were then subjected to environmental stresses including methyl viologen (MV)-induced oxidative stress, salt, cold and heavy metal stresses. Overexpression of these different enzymes enhanced salt and cold tolerance. The simultaneous expression of DHAR:GR and GST:GR conferred MV tolerance while expression of either transgene on its own didn't. This study provides evidence that increasing part of the antioxidant pathway within the chloroplast enhances the plant's ability to tolerate abiotic stress.  相似文献   

18.
臭氧胁迫对大豆叶片抗坏血酸-谷胱甘肽循环的影响   总被引:4,自引:1,他引:3  
王俊力  王岩  赵天宏  曹莹  刘玉莲  段萌 《生态学报》2011,31(8):2068-2075
由于城市化的加剧导致近地面臭氧(O3)浓度日益增加,对植物生长和生态系统的功能产生了显著影响,因此准确评估近地层O3浓度升高对植物的影响具有重要意义。本文利用开顶式气室(OTCs),系统探讨了模拟O3胁迫下大豆抗氧化系统抗坏血酸(AsA)-谷胱甘肽(GSH)循环清除活性氧(ROS)的机制及其对植株生长发育的影响。结果表明,在整个生育期内,与对照相比, 80?10 nL?L-1和110?10 nL?L-1 O3可以使大豆叶片丙二醛(MDA)含量、相对电导率增大,超氧阴离子(O2 )产生速率、过氧化氢(H2O2)含量升高,超氧化物歧化酶(SOD)活性减弱; AsA-GSH循环中的AsA、GSH含量减少,脱氢抗坏血酸(DHA)、氧化型谷胱甘肽(GSSG)含量增加,过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDHAR)、谷胱甘肽还原酶(GR)活性呈现出前期增强后期减弱趋势,而脱氢抗坏血酸还原酶(DHAR)活性呈现出增强-减弱-增强的趋势。以上结果说明,O3浓度升高促进了大豆叶片ROS的代谢速率,降低了AsA-GSH循环效率,表明抗氧化系统不能长时间忍受高浓度O3带来的氧化伤害,从而使膜脂过氧化程度加重,对大豆表现为伤害效应。  相似文献   

19.
Metals and ultraviolet (UV) radiation are two environmental stressors that can cause damage to plants. These two types of stressors often impact simultaneously on plants and both are known to promote reactive oxygen species (ROS) production. However, little information is available on the potential parallel stress responses elicited by metals and UV radiation. Using the aquatic plant Lemna gibba, we found that copper and simulated solar radiation (SSR, a light source containing photosynthetically active radiation (PAR) and UV radiation) induced similar responses in the plants. Both copper and SSR caused ROS formation. The ROS levels were higher when copper was combined with SSR than when applied with PAR. Higher concentrations of copper plus PAR caused toxicity as monitored by diminished growth and chlorophyll content. This toxicity was more pronounced when copper was combined with SSR. Because the generation of ROS was also higher when copper was combined with SSR, we attributed this enhanced toxicity to elevated levels of ROS. In comparison to PAR-grown plants, SSR treated plants exhibited elevated levels of superoxide dismutase (SOD) and glutathione reductase (GR). These enzyme levels were further elevated under both PAR and SSR when copper was added at concentrations that generated ROS. Interestingly, copper treatment in the absence of SSR (i.e. copper plus PAR) induced synthesis of the same flavonoids as those observed in SSR without copper. Finally, addition of either dimethyl thiourea or GSH (two common ROS scavengers) lowered in vivo ROS production, alleviated toxicity and diminished induction of GR as well as accumulation of UV absorbing compounds. Thus, the potential of ROS being a common signal for acclimation to stress by both copper and UV can be considered.  相似文献   

20.
Benznidazole (BZN) is a nitroimidazole derivative which has a notable trypanocide activity, and it is the only drug used in Brazil and Argentina for the treatment of Chagas' disease. The drug in current use is thought to act, at least in part, by inducing oxidative stress within the parasite. Imidazolic compounds are involved in the production of reactive oxygen species (ROS). In order to evaluate the effect of BZN on ROS production and on the antioxidant status of the host, male rats were treated for different periods of time (2, 4, 6, 10 and 30 days) with 40 mg BZN/kg body weight. After treatment, biomarkers of oxidative stress such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) and glutathione reductase (GR), and also thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), total glutathione (TG) and oxidized glutathione (GSSG) concentrations, were measured in crude hepatic homogenates. Our results revealed that BZN is able to cause tissue damage as shown by increased TBARS content, inhibition of some antioxidants and induction of other antioxidants in a concentration- and time-dependent manner. The tissue damage measured as TBARS increased up to the 10th day of treatment. GST activity was inhibited during the BZN treatment. On the other hand, CAT and GR showed similar increased activities at the beginning, followed by decreased activities at the end of the treatment. After 30 days of treatment, GR activity remained low while CAT activity was high, compared to controls. The SOD activities remained unchanged throughout the experimental period. GSH showed lower values at the beginning of BZN treatment but the hepatic concentrations were enhanced at the end of the experimental period. Total glutathione showed a similar profile, and oxidized glutathione showed higher values in rats treated with BZN. In conclusion, these results indicate that, at therapeutic doses, BZN treatment elicits an oxidative stress in rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号