首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
After minimal sample preparation, two different HPLC methodologies, one based on a single gradient reversed-phase HPLC step, the other on multiple HPLC runs each optimised for specific components, were used to investigate the composition of flavonoids and phenolic acids in apple and tomato juices. The principal components in apple juice were identified as chlorogenic acid, phloridzin, caffeic acid and p-coumaric acid. Tomato juice was found to contain chlorogenic acid, caffeic acid, p-coumaric acid, naringenin and rutin. The quantitative estimates of the levels of these compounds, obtained with the two HPLC procedures, were very similar, demonstrating that either method can be used to analyse accurately the phenolic components of apple and tomato juices. Chlorogenic acid in tomato juice was the only component not fully resolved in the single run study and the multiple run analysis prior to enzyme treatment. The single run system of analysis is recommended for the initial investigation of plant phenolics and the multiple run approach for analyses where chromatographic resolution requires improvement.  相似文献   

2.
The essential amino acid methionine is a substrate for the synthesis of S-adenosyl-methionine (SAM), that donates its methyl group to numerous methylation reactions, and from which polyamines and ethylene are generated. To study the regulatory role of methionine synthesis in tomato fruit ripening, which requires a sharp increase in ethylene production, we cloned a cDNA encoding cystathionine γ-synthase (CGS) from tomato and analysed its mRNA and protein levels during tomato fruit ripening. CGS mRNA and protein levels peaked at the “turning” stage and declined as the fruit ripened. Notably, the tomato CGS mRNA level in both leaves and fruit was negatively affected by methionine feeding, a regulation that Arabidopsis, but not potato CGS mRNA is subject to. A positive correlation was found between elevated ethylene production and increased CGS mRNA levels during the ethylene burst of the climacteric ripening of tomato fruit. In addition, wounding of pericarp from tomato fruit at the mature green stage stimulated both ethylene production and CGS mRNA level. Application of exogenous methionine to pericarp of mature green fruit increased ethylene evolution, suggesting that soluble methionine may be a rate limiting metabolite for ethylene synthesis. Moreover, treatment of mature green tomato fruit with the ethylene-releasing reagent Ethephon caused an induction of CGS mRNA level, indicating that CGS gene expression is regulated by ethylene. Taken together, these results imply that in addition to recycling of the methionine moieties via the Yang pathway, operating during synthesis of ethylene, de novo synthesis of methionine may be required when high rates of ethylene production are induced.  相似文献   

3.
Marked changes in the metabolism of hydroxycinnamic acid derivatives were observed in pulp and pericarp of tomato fruit (Lycopersicon esculentum var. cerasiforme) during its development. During fruit growth, biosynthesis and accumulation of chlorogenic acid were especially active in the pulp, whereas the formation of glucose derivatives occurred during maturation in the pericarp. There was a clear difference between the two compartments of the fruit concerning hydroxycinnamate: CoA ligase, O-methyltransferase and glucosyltransferase activities. The first two enzymes were high in the pulp during growth and the latter one was high in the pericarp during maturation. Of all the enzymes studied, only the glucosyltransferase showed increasing activity during maturation; it may be considered, along with the glucosylated derivatives, as a biochemical marker of maturation in tomato.  相似文献   

4.
Changes in the levels of indole-3-acetic acid (IAA) and abscisic acid (ABA) in tomato (Lycopersicon esculentum Mill.) fruit pericarp tissue during development through ripening were measured by GC-SIM-MS using d3-ABA and 13C6-IAA internal standards. In the two cultivars of fieldgrown tomatoes analyzed, the highest IAA levels (8–24 ng/g fw) were found at the earliest stage of development (7 days after anthesis) followed by a rapid decline in levels of the hormone. ABA levels of 40–60 ng/g fw were found at the earliest stages of development followed by a decline in levels until ripening occurred when elevated ABA levels (125 ng/g fw) were measured.  相似文献   

5.
Flowers of tomato (Lycopersicon esculentum Mill.) plants cv. Castle Rock were sprayed with 100 ppm of ethrel, 0.5 mm aminooxyacetic acid (AOA), or water (control) 2 days after anthesis. The fruit period of cell division was extended up to 16–18 days after anthesis with the application of ethrel but reduced from 10–12 days (control) down to only 6–8 days with the application of AOA. In a trend opposite to AOA application, fruits that received ethrel treatment were of higher ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC) levels than control. This was noticed not only during the first 2 weeks after anthesis but also during the fruit climacteric phase. Mesocarp cells of ethrel-treated fruits were greater in number/mm2 but smaller in size than control; an opposite trend was obtained with the application of AOA. This was observed for a period of 18 days after anthesis, but by that time or at earlier ages, fruits of AOA treatment were larger in size and heavier in weight than control, and both were larger and heavier than ethrel-treated ones. At 5 weeks after anthesis and thereafter, the fruit response to all treatments was totally reversed because early ethrel-treated fruits became significantly larger in size and heavier in weight with a ripening delay of about 10 and 15 days compared with those of control and AOA-treated ones, respectively. When the same treatments were applied to the whole plant, similar results were obtained because the early application of ethrel increased the fruit yield by about 15% over control with a pronounced ripening delay; an opposite trend was obtained with the application of AOA. No significant differences were found among all treatments in terms of flower or fruit abscission or fruit number/plant. The data suggest that ethylene regulates tomato fruit transmission from cell division to cell enlargement. In addition, fruit cell division is terminated only when endogenous ethylene decreases to its basal level, allowing cell enlargement to dominate and proceed as in the case of the early application of AOA. The ripening delay of ethrel-treated fruits may be caused by the longer time required for the increased cell number to reach maturation. A low level of ethrel application at the tomato early fruiting stage may be used for increasing fruit yield by increasing fruit size and consequently its quality. Received June 1, 1998; accepted December 7, 1998  相似文献   

6.
A cDNA library produced from mRNA isolated from the pericarp of wild-type tomato fruit (Lycopersicon esculentum Mill. cv Ailsa Craig) at the first visible sign of fruit ripening was differentially screened to identify clones whose homologous mRNAs were present at reduced levels in fruit of the tomato ripening mutant, ripening inhibitor,rin. Five clones were isolated (pERT 1, 10, 13, 14, 15). Accumulation of mRNA homologous to each of these clones increased during the ripening of wild-type fruit and showed reduced accumulation in ripening rin fruit. The levels of three of them (homologous to ERT 1, 13 and 14) were increased by ethylene treatment of the mutant fruit. A further clone, ERT 16 was identified for a mRNA present at a high level in both normal and mutant fruit at early stages of ripening. Database searches revealed no significant homology to the DNA sequence of ERT 14 and 15; however, DNA and derived amino acid sequence of ERT 1 both contain regions of homology with several reported UDP-glucosyl and glucuronosyl transferases (UDPGT) and with a conserved UDPGT motif. A derived amino acid sequence from the ERT 10 cDNA contains a perfect match to a consensus sequence present in a number of dehydrogenases. The ERT 13 DNA sequence has homology with an mRNA present during potato tuberisation. The presence of these mRNAs in tomato fruit is unreported and their role in ripening is unknown. The ERT 16 DNA sequence has homology with a ripening/stress-related cDNA isolated from tomato fruit pericarp.  相似文献   

7.
Apoplastic pH and ionic conditions exert strong influence on cell wall metabolism of many plant tissues; however, the nature of the apoplastic environment of ripening fruit has been the subject of relatively few studies. In this report, a pressure-bomb technique was used to extract apoplastic fluid from tomato fruit ( Lycopersicon esculentum Mill.) pericarp at several developmental stages. pH and the levels of K+, Na+, Ca2+, Mg2+, Cl and P were determined and compared with the values for the bulk pericarp and locule tissues. The pH of the apoplastic fluid from pericarp tissue decreased from 6.7 in immature and mature-green fruits to 4.4 in fully-ripe fruit. During the same period, the K+ concentration increased from 13 to 37 m M . The levels of Na+ and divalent cations did not change, whereas the anions P and Cl increased in ripe fruit. Ca2+ levels remained relatively constant during ripening at 4–5 m M , concentrations that effectively limit pectin solubilization. The electrical conductivity of the apoplastic liquid increased 3-fold during ripening, whereas osmotically active solutes increased 2-fold. Pressure-treated fruit retained the capacity to ripen. The decline in apoplastic pH and increase in ionic strength during tomato fruit ripening may regulate the activity of cell wall hydrolases. The potential role of apoplastic changes in fruit ripening and softening is discussed.  相似文献   

8.
The tomato (Lycopersicon esculentum Mill.) endo--1,4-glucanase (EGase) Cel1 protein was characterized in fruit using specific antibodies. Two polypeptides ranging between 51 and 52 kDa were detected in the pericarp, and polypeptides ranging between 49 and 51 kDa were detected in locules. The polypeptides recognized by Cel1 antiserum in fruit are within the size range predicted for Cel1 protein and could be derived from heterogeneous glycosylation. Cel1 protein accumulation was examined throughout fruit ripening. Cel1 protein appears in the pericarp at the stage in which many ripening-related changes start, and remains present throughout fruit ripening. In locules, Cel1 protein is already present at the onset of fruit ripening and remains constant during fruit ripening. This pattern of expression supports a possible role for this EGase in the softening of pericarp tissue and in the liquefaction of locules that takes place during ripening. The accumulation of Cel1 protein was also analyzed after fungal infection. Cel1 protein and mRNA levels are down-regulated in pericarp after Botrytis cinerea infection but are not affected in locular tissue. The same behavior was observed when fruits were infected with Penicillium expansum, another fungal pathogen. Cel1 protein and mRNA levels do not respond to wounding. These results support the idea that the tomato Cel1 EGase responds to pathogen infection and supports a relationship between EGases, plant defense responses and fruit ripening.This revised version was published online in August 2004 with corrections to Fig. 1 and Fig. 5.  相似文献   

9.
Phosphoenolpyruvate carboxykinase (PEPCK) is present in ripening tomato fruits. A cDNA encoding PEPCK was identified from a PCR-based screen of a cDNA library from ripe tomato fruit. The sequence of the tomato PEPCK cDNA and a cloned portion of the genomic DNA shows that the complete cDNA sequence contains an open reading frame encoding a peptide of 662 amino acid residues in length and predicts a polypeptide with a molecular mass of 73.5 kDa, which corresponds to that detected by western blotting. Only one PEPCK gene was identified in the tomato genome. PEPCK is shown to be present in the pericarp of ripening tomato fruits by activity measurements, western blotting and mRNA analysis. PEPCK abundance and activity both increased during fruit ripening, from an undetectable amount in immature green fruit to a high amount in ripening fruit. PEPCK mRNA, protein and activity were also detected in germinating seeds and, in lower amounts, in roots and stems of tomato. The possible role of PEPCK in the pericarp of tomato fruit during ripening is discussed.  相似文献   

10.
A common litchi cultivar “Huaizhi” was used for the experiment to understand the changes of pigment, phenolics content and activities of two enzymes involing in phenolics metabolism in pericarp during storage at room temperature and relative humidity of 73–79%. The maturation of "Huaizhi" fruit was 80% when harvested. The contents of carotenoid, anthocynin and activities of phenylalanine ammonia-lyase, polyphenol oxidase were increased, and the content of total phenolics was kept at its initial level in the first 2 days of storage. It indicated that the active synthesis of pigments and phenolics still continued with the progressive ripening. A decline of above parameters and content of flavonoid ware observed during the senescence of fruit. The relative contents of anthocynin, flavonoid, phenolics and activity of phenylalanine ammonialyase were 90%, 59%,71% and 46% in the day of 7 compared with that when harvested, respectively. Less change of anthocynin content was found in browning pericarp. The relation between phenolics, anthocynin and activities of two enzymes during repining and senescence of litchi fruit was discussed.  相似文献   

11.
Polyamine content of long-keeping alcobaca tomato fruit   总被引:13,自引:4,他引:9       下载免费PDF全文
Fruit of tomato landrace Alcobaca, containing the recessive allele alc, ripen more slowly, with a reduced level of ethylene production, and have prolonged keeping qualities. The levels of polyamines in pericarp tissues of alc and `wild type' Alc (cv Rutgers and Alcobaca-red) fruit were measured by HPLC in relation to ripening. Putrescine was the predominant polyamine with a lower content of spermidine, while spermine was just detectable. The level of putrescine was high at the immature green stage and declined in the mature green stage. In Alc fruit the decline persisted but in alc fruit the putrescine level increased during ripening to a level similar to that present at the immature green stage. There was no pronounced change or difference in spermidine levels. The enhanced polyamine level in alc fruit may account for their ripening and storage characteristics.  相似文献   

12.
Six peach and six nectarine cultivars were evaluated for the phenolic content in their pulp and peel tissues. Chlorogenic acid, catechin, epicatechin, rutin and cyanidin-3-glucoside were detected as the main phenolic compounds of ripened fruits. The concentration was always higher in peel tissue, with average values ranging from 1 to 8 mg g−1 dry weight (DW) depending on cultivar. Of the tested varieties, the white-flesh nectarine 'Silver Rome' emerged as the cultivar with the highest amount of total phenolics. Phenolic compounds were also profiled during fruit growth and ripening in the yellow nectarine cv. 'Stark Red Gold', which showed a decreasing concentration during fruit development in both peel and pulp tissues. Average amounts of total phenolics were approximately 25 mg g−1 DW 60 days after full bloom and decreased to 3 mg g−1 DW at ripening in pulp tissue. Differences among peel and pulp composition show the different dietetic and antioxidant potential of fruits consumed unpeeled and peeled.  相似文献   

13.
Fruits of tomato, Lycopersicon esculentum Mill. cv Liberty, ripen slowly and have a prolonged keeping quality. Ethylene production and the levels of polyamines in pericarp of cv Liberty, Pik Red, and Rutgers were measured in relation to fruit development. Depending on the stage of fruit development, Liberty produced between 16 and 38% of the ethylene produced by Pik Red and Rutgers. The polyamines putrescine, spermidine, and spermine were present in all cultivars. Cadaverine was detected only in Rutgers. Levels of putrescine and spermidine declined between the immature and mature green stages of development and prior to the onset of climacteric ethylene production. In Pik Red and Rutgers, the decline persisted, whereas in Liberty, the putrescine level increased during ripening. Ripe pericarp of Liberty contained about three and six times more free (unconjugated) polyamines than Pik Red and Rutgers, respectively. No pronounced changes in spermidine or cadaverine occurred during ripening. The increase in the free polyamine level in ripe pericarp of Liberty may account for the reduction of climacteric ethylene production, and prolonged storage life.  相似文献   

14.
We have purified pectin methylesterase (PME; EC 3.1.11) from mature green (MG) tomato (Lycopersicon esculentum Mill. cv Rutgers) pericarp to an apparent homogeneity, raised antibodies to the purified protein, and isolated a PME cDNA clone from a λgtll expression library constructed from MG pericarp poly(A)+ RNA. Based on DNA sequencing, the PME cDNA clone isolated in the present study is different from that cloned earlier from cv Ailsa Craig (J Ray et al. [1989] Eur J Biochem 174:119-124). PME antibodies and the cDNA clone are used to determine changes in PME gene expression in developing fruits from normally ripening cv Rutgers and ripening-impaired mutants ripening inhibitor (rin), nonripening (nor), and never ripe (Nr). In Rutgers, PME mRNA is first detected in 15-day-old fruit, reaches a steady-state maximum between 30-day-old fruit and MG stage, and declines thereafter. PME activity is first detectable at day 10 and gradually increases until the turning stage. The increase in PME activity parallels an increase in PME protein; however, the levels of PME protein continue to increase beyond the turning stage while PME activity begins to decline. Patterns of PME gene expression in nor and Nr fruits are similar to the normally ripening cv Rutgers. However, the rin mutation has a considerable effect on PME gene expression in tomato fruits. PME RNA is not detectable in rin fruits older than 45 days and PME activity and protein begin showing a decline at the same time. Even though PME activity levels comparable to 25-day-old fruit were found in root tissue of normal plants, PME protein and mRNA are not detected in vegetative tissues using PME antibodies and cDNA as probes. Our data suggest that PME expression in tomato pericarp is highly regulated during fruit development and that mRNA synthesis and stability, protein stability, and delayed protein synthesis influence the level of PME activity in developing fruits.  相似文献   

15.
Hans Kende  Thomas Boller 《Planta》1981,151(5):476-481
Ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) levels and ACC-synthase activity were compared in intact and wounded tomato fruits (Lycopersicon esculentum Mill.) at different ripening stages. Freshly cut and wounded pericarp discs produced relatively little ethylene and had low levels of ACC and of ACC-synthase activity. The rate of ethylene synthesis, the level of ACC and the activity of ACC synthase all increased manyfold within 2 h after wounding. The rate of wound-ethylene formation and the activity of wound-induced ACC synthase were positively correlated with the rate of ethylene production in the intact fruit. When pericarp discs were incubated overnight, wound ethylene synthesis subsided, but the activity of ACC synthase remained high, and ACC accumulated, especially in discs from ripe fruits. In freshly harvested tomato fruits, the level of ACC and the activity of ACC synthase were higher in the inside parts of the fruit than in the pericarp. When wounded pericarp tissue of green tomato fruits was treated with cycloheximide, the activity of ACC synthase declined with an apparent half life of 30–40 in. The activity of ACC synthase in cycloheximide-treated, wounded pericarp of ripening tomatoes declined more slowly.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

16.
Activity levels of UDP-glucose: (1,3)-β-glucan (callose) synthase in microsomal membranes of pericarp tissue from tomato fruit (Lycoperisicon esculentum Mill, cv Rutgers) were determined during development and ripening. Addition of the phospholipase inhibitors O-phosphorylcholine and glycerol-1-phosphate to homogenization buffers was necessary to preserve enzyme activity during homogenization and membrane isolation. Enzyme activity declined 90% from the immature green to the red ripe stage. The polypeptide composition of the membranes did not change significantly during ripening. The enzyme from immature fruit was inactivated by exogenously added phospholipases A2, C, and D. These results suggest that the decline in callose synthase activity during ontogeny may be a secondary effect of endogenous lipase action.  相似文献   

17.
The fruit of the Alcobaca landrace of tomato (Lycopersicon esculentum Mill.) have prolonged keeping qualities (determined by the allele a/c) and contain three times as much putrescine as the standard Rutgers variety (A/c) at the ripe stage (ARG Dibble, PJ Davies, MA Mutschler [1988] Plant Physiol 86: 338-340). Polyamine metabolism and biosynthesis were compared in fruit from Rutgers and Rutgers-a/c—a near isogenic line possessing the allele a/c, at four different stages of ripening. The levels of soluble polyamine conjugates as well as wall bound polyamines in the pericarp tissue and jelly were very low or nondetectable in both genotypes. The increase in putrescine content in a/c pericarp is not related to normal ripening as it occurred with time and whether or not the fruit ripened. Pericarp discs of both normal and a/c fruit showed a decrease in the metabolism of [1,4-14C]putrescine and [terminal labeled-3H]spermidine with ripening, but there were no significant differences between the two genotypes. The activity of ornithine decarboxylase was similar in the fruit pericarp of the two lines. Arginine decarboxylase activity decreased during ripening in Rutgers but decreased and rose again in Rutgers-a/c fruit, and as a result it was significantly higher in a/c fruit than in the normal fruit at the ripe stage. The elevated putrescine levels in a/c fruit appear, therefore, to be due to an increase in the activity of arginine decarboxylase.  相似文献   

18.
Experiments were carried out to evaluate the effect of glucose on ripening and ethylene biosynthesis in tomato fruit (Lycopersicon esculentum Mill.). Fruit at the light-red stage were vacuum infiltrated with glucose solutions post-harvest and changes in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC, ACC oxidase, and ethylene production monitored over time. ACC oxidase activity was also measured in pericarp discs from the same fruits that were treated either with glucose, fructose, mannose, or galactose. While control fruit displayed a typical peak of ethylene production, fruit treated with glucose did not. Glucose appeared to exert its effect on ethylene biosynthesis by suppressing ACC oxidase activity. Fructose, mannose, and galactose did not inhibit ACC oxidase activity in tomato pericarp discs. Glucose treatment inhibited ripening-associated colour development in whole fruit. The extent of inhibition of colour development was dependent upon the concentration of glucose. These results indicate that glucose may play an important role in ethylene-associated regulation of fruit ripening.  相似文献   

19.
对采后番茄果实的电镜观察表明:当果实成熟衰老时,叶绿体数量减少,多数基粒结构丧失;成熟果实胞壁中胶层水解成中空的电子透明区,初生壁的纤丝也发生一定程度的水解,相邻细胞分离;外源 PG(多聚半乳糖醛酸酶)提取物处理绿熟期果实组织,也可引起胞壁结构和叶绿体发生与正常衰老相同的变化。Ca~(2+)、Mg~(2+)、Co~(2+)二价金属离子处理果实,可明显降低番茄红素含量和 PG 活性,延缓果实软化。外源乙烯处理果实,可促进番茄红素的形成,提高 PG活性,并能解除钙对 PG 活性的抑制。本文也对 PG 在乙烯和 Ca~(2+)调节果实成熟中的作用进行了讨论。  相似文献   

20.
We show that phytochromes modulate differentially various facets of light-induced ripening of tomato fruit (Solanum lycopersicum L.). Northern analysis demonstrated that phytochrome A mRNA in fruit accumulates 11.4-fold during ripening. Spectroradiometric measurement of pericarp tissues revealed that the red to far-red ratio increases 4-fold in pericarp tissues during ripening from the immature-green to the red-ripe stage. Brief red-light treatment of harvested mature-green fruit stimulated lycopene accumulation 2. 3-fold during fruit development. This red-light-induced lycopene accumulation was reversed by subsequent treatment with far-red light, establishing that light-induced accumulation of lycopene in tomato is regulated by fruit-localized phytochromes. Red-light and red-light/far-red-light treatments during ripening did not influence ethylene production, indicating that the biosynthesis of this ripening hormone in these tissues is not regulated by fruit-localized phytochromes. Compression analysis of fruit treated with red light or red/far-red light indicated that phytochromes do not regulate the rate or extent of pericarp softening during ripening. Moreover, treatments with red or red/far-red light did not alter the concentrations of citrate, malate, fructose, glucose, or sucrose in fruit. These results are consistent with two conclusions: (a) fruit-localized phytochromes regulate light-induced lycopene accumulation independently of ethylene biosynthesis; and (b) fruit-localized phytochromes are not global regulators of ripening, but instead regulate one or more specific components of this developmental process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号