首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen metabolism was studied in degenerative articular cartilage of dogs with spontaneous, early onset osteoarthritis. A fraction of collagen which represented about 1.5% of the total was extracted from cartilage samples with dilute phosphate buffer (pH 7.4) containing 0.2% sodium dodecyl sulfate. Agarose gel filtration in the presence of sodium dodecyl sulfate revealed that extracts of degenerative cartilage had about 24% procollagen whereas extracts of normal samples had only 3%. The isolated procollagen fraction was rechromatographed on agarose columns in the presence of mercaptoethanol. This resulted in the identification of a collagen species which migrated between marker beta and alpha collagen chains. The molecular weight of this collagen was estimated to be 150,000. Based on incorporation of [14C]proline, its ratio of hydroxy[14C]proline to total 14C was 0.32. Procollagen was not found after limited pepsin digestion (pH 3, 4 degrees C, 16 h) of degenerative cartilage samples. Since the total collagen content (microgram hydroxyproline/mg cartilage), hydroxy-[14C]proline/mg cartilage, specific radioactivity of hydroxyproline in the extractable collagen fraction were similar for normal and degenerative cartilage we propose that procollagen accumulated in the degenerative cartilage due to a partial defect in conversion of procollagen to collagen.  相似文献   

2.
Collagen metabolism in the focal degenerated cartilage from immature dogs with degenerative joint disease was compared with that in the adjacent ‘normal’ cartilage of the same joint surface. The deposition of collagen into the cartilage in vitro as measured by accumulation of hydroxyl [14C]proline was decreased in the early and in advanced stages of cartilage degeneration. The deposition of collagen into cartilage in vivo as measured by the accumulation of hydroxy[3H]proline (intravenously injected [3H]proline) also was reduced in the degenerated cartilages of a dog with degenerative joint disease. Gel electrophoretic analysis revealed that degenerated cartilage contained less α1 collagen chains, but increased amounts of larger proteins. Degenerated cartilage contained more water, increased amounts of unidentified, non-collagenous protien. increased collagenolytic enzyme activity and fewer chondrocytes. Decreased deposition of collagen would result in collagen depletion in the foci of degenerated cartilage in joints of dogs with degenerative joint disease.  相似文献   

3.
Cultured normal human skin fibroblasts were incubated with [14C]proline in the presence and absence of 1.0 mM p-nitrophenyl-β-D-xylose. Formation of non-dialyzable hydroxyproline was used as a measure of collagen synthesis. Although total [14C]proline incorporation was similar in the two cultures, [14C]hydroxyproline formation was significantly decreased in the β-xyloside-treated cultures. Increasing the period of incubation increased the radioactivity of the insoluble collagen fraction in untreated fibroblasts, however, in β-xyloside-treated cultures no such increase was observed. In contrast to the decreased production of collagen, growth of cells in the presence of the β-xyloside induced the synthesis of high levels of soluble glycosaminoglycans as measured by 35SO4 incorporation into isolated polysaccharide.  相似文献   

4.
Intracellular degradation of newly synthesized collagen is quantitated by incubating fibroblasts with [14C]proline and determining the percentage of total [14C]hydroxyproline that is present in a low molecular weight fraction. Several problems make this difficult. (1) Commercial [14C]proline is often contaminated with [14C]hydroxyproline and must be purified before use. (2) Salt and [14C]proline interfere with the determination of [14C]hydroxyproline in the low molecular weight fraction and must be removed by preparative ion-exchange chromatography. (3) Epimerization of trans- to cis-hydroxyproline during acid hydrolysis is variable and must be taken into account. (4) Loss of [14C]hydroxyproline during processing varies; [3H]hydroxyproline can be used as an internal measure of recovery, even though tritium may be lost during hydrolysis. An analytic cation-exchange resin is used for the final quantitation of [14C]hydroxyproline in the low and high molecular weight fractions. With these methods, degradation of newly synthesized collagen can be determined with a precision of ± 3%.  相似文献   

5.
6.
The synthesis of procollagen hydroxyproline and hydroxylysine was examined in matrix-free cells which were isolated from embryonic tendon by controlled enzymic digestion and then incubated in suspension. After the cells were labeled with [14C]proline for 2 min, or about one-third the synthesis time for a Pro-α chain, [14C]hydroxyproline was found in short peptides considerably smaller than the Pro-α chains of procollagen. The results, therefore, confirmed previous reports indicating that the hydroxylation of proline can begin on nascent chains. In similar experiments in which the cells were labeled with [14C]lysine, [14C]hydroxylysine was found in short, newly synthesized peptides, providing the first evidence that the hydroxylation of lysine can also begin on nascent peptides. However, further experiments demonstrated that the synthesis of hydroxyproline and hydroxylysine continues until some time after assembly of the polypeptide chains is completed.  相似文献   

7.
A technique is described for the rapid isolation of highly purified preparations of viable glomeruli from rat kidney cortex. The synthesis of protein as judged by the incorporation of [14C]proline into non-diffusible material was shown to be linear for up to 6 h. The synthesis of collagen, measured as non-diffusible 4-hydroxy[14C]proline, was also linear over this period but represented only a small proportion of total protein synthesis. Similar studies conducted in vivo confirmed that collagen synthesis accounted for less than 5% of total protein synthesis in glomeruli. When isolated glomeruli were incubated with [14C]proline, it was found that approximately 16% of the hydroxyproline present in the collagenous component occurred as the 3-isomer. When glomeruli were incubated with [14C]lysine over 90% of the hydroxy[14C]lysine synthesised was glycosylated and most of the glycosylated hydroxy[14C]lysine was present as glucosyl-galactosyl-hydroxy[14C]lysine. The size of the basement membrane collagen synthesised by the isolated glomeruli was estimated by treating the 14C-labelled protein with mercaptoethanol and sodium dodecyl sulphate and then chromatographing the 14C-labelled protein on an agarose column equilibrated and eluted with buffer containing 0.1% (w/v) sodium dodecyl sulphate. The initial form of [14C]collagen synthesised was found to consist of polypeptide chains which had molecular weights of approximately 140 000 and which were shown to be distinctly larger than the polypeptide chains from embryonic chick tendon procollagen. Also when glomeruli were labelled with [14C]proline for 2 h and chased with unlabelled proline for 4 h there was a time-dependent conversion of the initially synthesised collagen moiety to collagen polypeptide chains which co-chromatograph with tendon pro-alpha chains (molecular weight approx. 120 000).  相似文献   

8.
A specific and sensitive method is described for the isolation and quantitation of [14C]proline and [14C]hydroxyproline from uterine collagen of the immature rat. Selectivity is achieved in this isolation by using a protease-free bacterial collagenase. There is complete release of hydroxyproline from uterine protein if the latter is suspended by sonication prior to treatment with collagenase. There is a consistent recovery of [14C]proline and [14C]hydroxyproline when they are added to protein hydrolysates of uterus and then subjected to the procedures required for their isolation and quantitation. It is possible using this method to determine the incorporation of [14C]proline into collagen of the rat uterus and to quantitate its conversion to [14C]hydroxyproline. Coupled with the colorimetric methods for proline and hydroxyproline, it is also possible to determine their specific activity.  相似文献   

9.
Inhibition of procollagen triple-helix formation by the addition of cis-hydroxyproline or azetidine-2-carboxylic acid increased the synthesis of 3-hydroxy[14C]proline 1.7-1.8-fold in pulse-chase experiments with freshly isolated chick-embryo tendon cells. The amount of 3-hydroxy[14C]proline, expressed as a percentage of the total 14C radioactivity in hydroxyproline, reached 8.4%. Control experiments indicated that the two analogues had no effect on the prolyl 3-hydroxylase activity of these cells. The data suggest that the time available before triple-helix formation in part regulates the extent of the 3-hydroxylation of proline in the biosynthesis of collagen in intact cells.  相似文献   

10.
12 patients with subarachnoid hemorraghe due to rupture of a cerebral aneurysm were examined clinically for symptoms and signs of a connective tissue disorder and biochemically for details of the biosynthesis of collagen. No uniform clinical pattern of any connective tissue disorder was seen in these patients, although selected signs were observed. Skin fibroblast cultures were then established. The rate of procollagen production in two cell lines was reduced by 40% and 50%, respectively, and the intracellular accumulation of hydroxyl[14C]proline (as a percentage of total hydroxy[14C]proline) was increased by 70% in each relative to eight control cell lines. No difference was found in the degree of intracellular degradation of procollagen. After pulse-labelling, however, the radioactive procollagen was secreted into the medium in 1 h in the control cells, but required at least 3 h in the two aneursym patient cell lines. The results, thus, suggest that delayed secretion of procollagen rather than increased intracellular degradation led to the reduction in the rate of procollagen synthesis in these two fibroblast lines from patients with cerebral artery aneurysm.  相似文献   

11.
Gingival tissue obtained from diphenylhydantoin-treated patients was cultured in the presence of [14C]proline for 24 h. The radioactive medium was removed and the tissue cultured for three days more. DNA, protein, hydroxyproline, proline and radioactivity determinations in the tissue indicated increased cellular proliferation, increased collagen contents and decreased breakdown of collagen in the affected tissues. The media were assayed for dialyzable and non-dialyzable hydroxyproline contents. It was found that the media in which diphenylhydantoin tissues were cultured contained more than twice as much non-dialyzable hydroxyproline than the controls. It was concluded that diphenylhydantoin brought about a reduction in collagen breakdown thus explaining the accumulation of hydroxylated collagen in the tissue.  相似文献   

12.
In vitro procollagen production rates can be determined by culturing cells in the presence of [3H]proline and measuring the subsequent formation of [3H]hydroxyproline. Values of actual procollagen production can be calculated if the total radioactivity and the specific activity of the newly synthesized procollagen is known. A simple microanalytical method for measuring procollagen specific activity in order to determine procollagen production by lung fibroblasts in vitro is reported. Confluent fibroblasts (IMR-90) were cultured in fresh medium containing [3H]proline, and [3H]hydroxyproline production and prolyl hydroxylation were measured. Hydroxyproline specific activity of nondialyzable procollagen in culture medium as well as extracellular and intracellular free proline specific activity were determined by an ultramicromethod in which the radiolabeled amino acids were reacted with [14C]dansyl chloride of known specific activity [Airhart et al. (1979) Anal. Biochem. 96, 45–55]. Procollagen production rates were readily determined by this method using 5 to 20 μCi [3H]proline and approximately 106 cells. It was found that 3H-procollagen production rate into culture medium was constant after a lag of 1.6 h, while procollagen production rate (0.23 pmol/μg DNA · h) was constant from time zero to 9 h. The specific activities of extracellular and intracellular free proline were not constant during the labeling period, nor were they equal to procollagen specific activity. These data indicate that free proline pool specific activities are not a valid measure of procollagen specific activity. The experimental approach described obviates the need to define or characterize the proline precursor pool from which procollagen is synthesized, and may be readily applied to determine fibroblast procollagen production rates in vitro.  相似文献   

13.
Cells were isolated from the aortae of 17-day old chick embryos by digestion of the vessels with a combination of trypsin and collagenase. When these cells were incubated in suspension culture in Krebs-Ringer media containing pancreatic trypsin inhibitor and radioactive amino acids, they synthesized and secreted labeled proteins into the media. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate of the secreted proteins labeled with [14C]proline revealed two major components. The larger component with an approximate molecular weight of 125,000 had a [14C]hydroxyproline content consistent with a form of procollagen. The molecular weight of 70,000 and [14C]hydroxyproline content of the second component was consistent with that previously reported for tropoelastin extracted from chick aortae. By following the kinetics and secretion of tropoelastin labeled with [3H]valine, we have estimated that 17 minutes are required to synthesize and secrete the molecule under these experimental conditions.  相似文献   

14.
Human fibroblasts when induced to make nonhelical , defective collagen have mechanisms for degrading up to 30% of their newly synthesized collagen intracellularly prior to secretion. To determine if at least a portion of the degradation of defective collagen occurs by lysosomes, extracts of cultured HFL-1 fibroblasts were examined for proteinases capable of degrading denatured type I [3H]procollagen. The majority of the proteolytic activity against denatured [3H]-procollagen had a pH optimum of 3.5-4; it was stimulated by dithiothreitol and inhibited 95% by leupeptin, 10% by pepstatin, and 98% by leupeptin and pepstatin together. Extracts of purified lysosomes from the fibroblasts were active in degrading denatured [3H]procollagen and were completely inhibited by leupeptin and pepstatin. To demonstrate directly that human lung fibroblasts can translocate a portion of their defective collagen to lysosomes, cultured cells were incubated with cis-4-hydroxyproline and labeled with [14C]proline to cause the cells to make nonhelical [14C]procollagen. About 3% of the total intracellular hydroxy[14C]proline was found in lysosomes. If, however, the cells were also treated with NH4Cl, an inhibitor of lysosomal function, 18% of the intracellular hydroxy[14C]proline was found in lysosomes. These results demonstrate that cultured human lung fibroblasts induced to make defective collagen are capable of shunting a portion of such collagen to their lysosomes for intracellular degradation.  相似文献   

15.
Metabolites of -[14C]proline were found in the trichloroacetic acid-soluble fraction of 16-day-old chick embryo frontal bones. In several ion-exchange procedures these metabolites interfered with the analysis of hydroxyproline derived from the metabolic breakdown of collagen. The major metabolite was identified as glutamic acid by its chromatographic and crystallization properties. It was eluted from AG50 cation-exchange resin with 1.0 HCL in the hydroxyproline region, but was separated from hydroxyproline on a DC-6A column in the amino acid analyzer. Another metabolite was identified as aspartic acid. It was not separated from hydroxyproline on either AG50 using 1 HCL for elution or on DC-6A using 0.1 sodium citrate, pH 3.25, for elution, but adequate separation was obtained by elution with 0.2 sodium citrate buffer at pH 2.91. Formation of these metabolites was not related either to protein synthesis or proline hydroxylation. Therefore, it is possible to analyze for hydroxyproline accurately by using a separate unhydroxylated sample to correct for the presence of the metabolites. The formation of glutamic acid suggested that proline oxidase activity might be present in bone tissue, but none was detected using a sensitive radioisotopic assay. Although the amount of radioactivity found in the metabolites was 36% of the amount of [14C]proline incorporated into protein, no radioactive glutamic or aspartic acid was present in protein hydrolyzates. This observation suggests that the metabolites did not enter the major amino acid pool used for protein synthesis.  相似文献   

16.
1. The earlier observation (Woessner, 1969) of oestradiol inhibition of collagen breakdown is confirmed and extended. Administration of 100mug of oestradiol-17beta/day to parturient rats strongly inhibits the loss of collagen from the involuting uterus. Three experiments show that this effect is due to an inhibition of collagen degradation rather than to a stimulation of collagen synthesis. 2. Uterine collagen was labelled with hydroxy[(14)C]-proline by the administration of [(14)C]proline near the end of pregnancy. By 3 days post partum, control uteri lost 83% of their collagen and 90% of their hydroxy[(14)C]proline. Uteri from oestradiol-treated rats lost only 50% of both total and labelled hydroxyproline, with no decrease in the specific radioactivity of the hydroxyproline. 3. Incorporation of [(14)C]proline into uterine collagen hydroxyproline in vivo was not affected by oestradiol treatment. 4. Urinary excretion of hydroxyproline was increased in post-partum control rats and decreased in oestradiol-treated rats. 5. An enzyme capable of cleaving 4-phenylazobenzyloxycarbonyl-l-prolyl-l-leucylglycyl- l-prolyl-d-arginine (a substrate for clostridial collagenase) increased in activity in the post-partum uterus and was unaffected by oestradiol treatment. 6. Uterine homogenates digested uterine collagen extensively at pH3.2. This digestion was unaffected by the oestradiol treatment. 7. Lysosomal fractions prepared by density-gradient centrifugation of uterine homogenates contained coincident peaks of cathepsin D activity and peptide-bound hydroxyproline. The cathepsin D and hydroxyproline contents of this peak were unaffected by oestradiol treatment.  相似文献   

17.
1. Isolation of free and membrane-bound ribosomes from embryonic chick sternal-cartilage cells labelled for 4min with [14C]proline and their subsequent analysis for hydroxy[14C]proline indicated that cartilage procollagen biosynthesis occurs on bound ribosomes. 2. Nascent procollagen polypeptides on bound ribosomes isolated from cells labelled with [14C]lysine were found to contain hydroxy[14C]lysine indicating that hydroxylation of lysine commences while the growing chains are still attached to the ribosomes. 3. Analysis of bound ribosomes labelled with either [14C]proline or [14C]lysine on sucrose density gradients indicated that cartilage procollagen is synthesized on large polyribosomes in the range 250-400S. 4. Microsomal preparations isolated from cells pulse-labelled for 4 min with [14C]proline were used to determine the direction of release of nascent procollagen polypeptides. Puromycin induced the vectorial release of nascent procollagen polypeptides into the microsomal vesicles suggesting that the first step in the secretion of procollagen polypeptides is their transfer from the ribosomes through the membrane of the endoplasmic reticulum into the cisternal space. 5. The procollagen polypeptides secreted by cartilage cells were shown to be linked by inter-chain disulphide bonds. 6. Examination of the state of aggregation of pro-alpha chains in subcellular fractions isolated from cartilage cells labelled with [14C]proline for various periods of time have provided data on the timing and location of inter-chain disulphide-bond formation. This process commences in the rough endoplasmic reticulum after the release of completed pro-alpha chains from membrane-bound ribosomes. Pro-alpha chains isolated from fractions of smooth endoplasmic reticulum were virtually all present as disulphide-bonded aggregates, suggesting that either disulphide bonding is completed in this cellular compartment, or that procollagen needs to be in a disulphide-bonded form to be transferred to this region of the endoplasmic reticulum. 7. Comparison of these results with previously published data on disulphide bonding in tendon cells suggest that the rate of inter-chain disulphide-bond formation is significantly slower in cartilage cells.  相似文献   

18.
The synthesis of collagen has been demonstrated in endothelial cells of Descemet's membrane isolated from rabbit cornea. Incorporation of [14C]proline and [14C]lysine into nondialyzable protein was measured in the medium and cell fraction after incubating Descemet's membrane for up to 5 hours. In the [14C]collagen synthesized by the endothelium, 15% of the hydroxy[14C]proline was present as the 3-isomer. About 98% of the hydroxy[14C]lysine in the 14C-labeled-protein found in the medium was glycosylated; 95% of the glycosylated hydroxy[14C]lysine was in the form of the disaccharide glucosyl-galactosyl-hydroxy[14C]lysine. Time course experiments with [14C]proline indicated that there was a delay of about 60 min before significant amounts of [14C]collagen were secreted into the medium. The initial polypeptides of [14C]collagen synthesized by the corneal endothelium had an apparent molecular weight of 155,000. The chemical and physical properties of the [14C]collagen synthesized by rabbit corneal endothelium are consistent with those of basement membrane collagen synthesized by other cell types.  相似文献   

19.
The capacity of lung explant cultures to synthesize collagen can be estimated by determining the content of [3H]hydroxyproline in protein following incubation with [3H]proline. The technique requires acid hydrolysis followed by quantitative separation of hydroxyproline from proline for scintillation counting and is often restricted to methods that can accommodate large samples because of relatively low specific radioactivity. A method which is useful for such samples, providing rapid separation of nonderivatized amino acids by ion-exchange HPLC, is described here. The HPLC system employs an HPX-87C cation-exchange column in 10 mm calcium acetate, pH 5.5, at 85°C. Under isocratic conditions hydroxyproline is completely resolved from proline with quantitative recovery of the 3H cpm applied to the column. Large amounts of material, equivalent to at least 150 mg wet wt of lung, can be applied without affecting resolution or recovery, and samples can be injected at intervals as short as 40 min. This method was used to study collagen biosynthesis in a model of pulmonary fibrosis induced in rabbits by the tumor-promoting agent, phorbol myristate acetate (PMA), and provides information concerning total protein synthesis as well as production of collagen. The data show a doubling in the rate of collagen production in lung explants prepared from animals treated with PMA compared with explants from control animals.  相似文献   

20.
A technique of derivatizing proline and 4-hydroxyproline with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole was used to measure the radioactivities, concentrations and specific activities of proline and hydroxyproline. The technique was used to study the conditions of procollagen synthesis in cultured human foreskin fibroblasts. Procollagen synthesis appeared to be independent of the proline concentration in the medium, in the presence of glutamine, when monitored by the assay of non-dialyzable hydroxyproline, but not when monitored by [14C]proline incorporation. In the absence of unlabelled proline added to labelled proline in the medium, the specific activity of the secreted procollagen did not reach a plateau over a 24-h period. When the medium was supplemented with glutamine, glutamic acid, or aspartic acid, both the radioactivity and concentration of intracellular free proline decreased. Pyrrolidone-2-carboxylic acid and ornithine both induced a slight increase in concentration of the intracellular free proline. Glutamine competed with [14C]proline for incorporation into prolyl-tRNA and procollagen, independently of free intracellular proline, and it stimulated the biosynthesis of procollagen (expressed as non-dialyzable hydroxyproline) by a factor of 2.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号