首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
SIRT1, a class III histone deacetylase, is considered a key regulator of cell survival and apoptosis through its interaction with nuclear proteins. In this study, we have examined the likelihood and role of the interaction between SIRT1 and Smad7, which mediates transforming growth factor beta (TGFbeta)-induced apoptosis in renal glomerular mesangial cells. Immunoprecipitation analysis revealed that SIRT1 directly interacts with the N terminus of Smad7. Furthermore, SIRT1 reversed acetyl-transferase (p300)-mediated acetylation of two lysine residues (Lys-64 and -70) on Smad7. In mesangial cells, the Smad7 expression level was reduced by SIRT1 overexpression and increased by SIRT1 knockdown. SIRT1-mediated deacetylation of Smad7 enhanced Smad ubiquitination regulatory factor 1 (Smurf1)-mediated ubiquitin proteasome degradation, which contributed to the low expression of Smad7 in SIRT1-overexpressing mesangial cells. Stimulation by TGFbeta or overexpression of Smad7 induced mesangial cell apoptosis, as assessed by morphological apoptotic changes (nuclear condensation) and biological apoptotic markers (cleavages of caspase3 and poly(ADP-ribose) polymerase). However, TGFbeta failed to induce apoptosis in Smad7 knockdown mesangial cells, indicating that Smad7 mainly mediates TGFbeta-induced apoptosis of mesangial cells. Finally, SIRT1 overexpression attenuated both Smad7- and TGFbeta-induced mesangial cell apoptosis, whereas SIRT1 knockdown enhanced this apoptosis. We have concluded that Smad7 is a new target molecule for SIRT1 and SIRT1 attenuates TGFbeta-induced mesangial cell apoptosis through acceleration of Smad7 degradation. Our results suggest that up-regulation of SIRT1 deacetylase activity is a potentially useful therapeutic strategy for prevention of TGFbeta-related kidney disease through its effect on cell survival.  相似文献   

3.
Regulation of protein turnover by acetyltransferases and deacetylases   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.

Background

WRN is a multi-functional protein involving DNA replication, recombination and repair. WRN acetylation has been demonstrated playing an important role in response to DNA damage. We previously found that WRN acetylation can regulate its enzymatic activities and nuclear distribution.

Methodology/Principal Finding

Here, we investigated the factors involved in WRN acetylation and found that CBP and p300 are the only major acetyltransferases for WRN acetylation. We further identified 6 lysine residues in WRN that are subject to acetylation. Interestingly, WRN acetylation can increase its protein stability. SIRT1-mediated deacetylation of WRN reverses this effect. CBP dramatically increases the half-life of wild type WRN, while mutation of these 6 lysine residues (WRN-6KR) abrogates this increase. We further found that WRN stability is regulated by the ubiquitination pathway and WRN acetylation by CBP significantly reduces its ubiquitination. Importantly, we found that WRN is strongly acetylated and stabilized in response to mitomycin C (MMC) treatment. H1299 cells stably expressing WRN-6KR, which mimics unacetylated WRN, display significantly higher MMC sensitivity compared with the cells expressing wild-type WRN.

Conclusion/Significance

Taken together, these data demonstrate that WRN acetylation regulates its stability and has significant implications regarding the role of acetylation on WRN function in response to DNA damage.  相似文献   

6.
Runx2/Cbfa1/Pebp2aA is a global regulator of osteogenesis and is crucial for regulating the expression of bone-specific genes. Runx2 is a major target of the bone morphogenetic protein (BMP) pathway. Genetic analysis has revealed that Runx2 is degraded through a Smurf-mediated ubiquitination pathway, and its activity is inhibited by HDAC4. Here, we demonstrate the molecular link between Smurf, HDACs and Runx2, in BMP signaling. BMP-2 signaling stimulates p300-mediated Runx2 acetylation, increasing transactivation activity and inhibiting Smurf1-mediated degradation of Runx2. HDAC4 and HDAC5 dea-cetylate Runx2, allowing the protein to undergo Smurf-mediated degradation. Inhibition of HDAC increases Runx2 acetylation, and potentiates BMP-2-stimulated osteoblast differentiation and increases bone formation. These results demonstrate that the level of Runx2 is controlled by a dynamic equilibrium of acetylation, deacetylation, and ubiquitination. These findings have important medical implications because BMPs and Runx2 are of tremendous interest with regard to the development of therapeutic agents against bone diseases.  相似文献   

7.
8.
9.
10.
11.
12.
MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation   总被引:17,自引:0,他引:17  
The tumor suppressor p53 is stabilized and activated in response to cellular stress through post-translational modifications including acetylation. p300/CBP-mediated acetylation of p53 is negatively regulated by MDM2. Here we show that MDM2 can promote p53 deacetylation by recruiting a complex containing HDAC1. The HDAC1 complex binds MDM2 in a p53-independent manner and deacetylates p53 at all known acetylated lysines in vivo. Ectopic expression of a dominant-negative HDAC1 mutant restores p53 acetylation in the presence of MDM2, whereas wild-type HDAC1 and MDM2 deacetylate p53 synergistically. Fibroblasts overexpressing a dominant negative HDAC1 mutant display enhanced DNA damage-induced p53 acetylation, increased levels of p53 and a more pronounced induction of p21 and MDM2. These results indicate that acetylation promotes p53 stability and function. As the acetylated p53 lysine residues overlap with those that are ubiquitylated, our results suggest that one major function of p53 acetylation is to promote p53 stability by preventing MDM2-dependent ubiquitylation, while recruitment of HDAC1 by MDM2 promotes p53 degradation by removing these acetyl groups.  相似文献   

13.
Upon genomic insult, the tumor suppressor p53 is phosphorylated and acetylated at specific serine and lysine residues, increasing its stability and transactivation function. Deacetylases, including the type III histone deacetylase SIRT1, remove acetyl groups from p53 and counterbalance acetyltransferase activity during a DNA damage response. This report describes a series of high-throughput LanthaScreen? time-resolved F?rster resonance energy transfer (TR-FRET) immunoassays for detection of intracellular p53 phosphorylation of Ser15 and acetylation of Lys382 upon treatment with DNA damage agents, such as etoposide. These assays were used to measure the deacetylase activity of SIRT1 and/or Type I/II Histone deacetylases (HDACs). First, BacMam-mediated overexpression of SIRT1 resulted in dose-dependent deacetylation of GFP-p53 following etoposide treatment of U-2 OS cells, confirming that GFP-p53 serves as a SIRT1 substrate in this assay format. Further, overexpression of the acetyltransferase p300 via BacMam increased the acetylation of GFP-p53 at Lys382. Next, siRNA-mediated knockdown of SIRT1 resulted in increased GFP-p53 acetylation, indicating that endogenous SIRT1 activity can also be measured in U-2 OS cells. Consistent with these results, GFP-p53 acetylation was also increased upon treatment of cells with a small-molecule inhibitor of SIRT1, EX-527. The effect of this compound was dramatically increased when used in combination with chemotherapeutic drug and/or the HDAC inhibitor Trichostatin A, confirming a proposed synergistic mechanism of p53 deacetylation by SIRT1 and Type I/II HDACs. Taken together, the cellular assays described here can be used as high-throughput alternatives to traditional immunoassays such as western blotting for identifying pharmacological modulators of specific p53-modifying enzymes.  相似文献   

14.
15.
16.
17.
18.
19.
Class II histone deacetylases: versatile regulators   总被引:24,自引:0,他引:24  
  相似文献   

20.
Sphingosine kinase 1 (SPK1) is a key enzyme in the sphingolipid metabolic pathway. It forms an essential checkpoint to regulate the relative levels of bioactive sphingolipid metabolites, ceramide, sphingosine, and sphingosine 1-phosphate (S1P). Here, we present evidence that SPK1 is acetylated by the intrinsic acetyltransferase activity of p300/cAMP-response element-binding protein (CREB)-binding protein (CBP) at a conserved acetylation motif (the GK motif). This post-translational modification may be an important regulator of SPK1 protein, as acetylation by p300 or CBP increased its stability. Mutation of two lysine (K) residues in its GK motif to either arginine (R) or glutamine (Q) blocked SPK1 ubiquitination and prevented its degradation by the proteasome. The processes of acetylation and ubiquitination may compete for the same lysine residues and, therefore, form a switch for SPK1 protein regulation. Intriguingly, human embryonic kidney (HEK) 293 cells stably expressed the mutated form of SPK1, in which the K residue was mutated to Q (Q-SPK1), and this mutated form mimicked acetylated SPK1. These cells were larger in size and had a slower growth rate compared to cells that expressed wild-type SPK1 (W-SPK1) or the K/R-mutated SPK1 (R-SPK1). These data suggest that SPK1 acetylation plays a key role in cell growth, cell size, and cell-cycle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号