首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Interaction of prostaglandins (PG) with human plasma low density lipoproteins (LDL) was studied, using fluorescent spectroscopy and photoreactive labeling. It was demonstrated that PGE1 at low concentrations (less than 10(-9) M) induces specific lipid rearrangements on the surface of LDL globules. It was assumed that these rearrangements are brought about by the interaction of PG with apolipoprotein B to form short-living complexes. A possible mechanism and biological significance of the observed phenomenon are discussed.  相似文献   

2.
The effects of prostaglandin (PG) E1, PGE2, the stable prostacyclin analogue Iloprost, and PGF2 alpha on low density lipoprotein (LDL) receptor activity and cholesterol synthesis were investigated in freshly isolated human mononuclear leukocytes. Incubation of cells for up to 45 hr in a lipid-free medium resulted in an increase in the rate of cholesterol synthesis from [14C]acetate and the high affinity accumulation and degradation of 125I-labeled LDL. Addition of PGE1 in increasing concentrations to the incubation medium inhibited cholesterol synthesis and the specific accumulation and degradation of 125I-labeled LDL; at a concentration of 10 microM, the inhibitions were 61%, 70%, and 67%, respectively, after an incubation of 20 hr. The effects of PGE2 and Iloprost were similar. The action of the prostaglandins on LDL receptor activity appeared to be mediated by a decrease in the number of LDL receptors and not by a change in the binding affinity. The prostaglandins yielded sigmoidal log concentration-effect curves. In contrast, PGF2 alpha had no influence on cholesterol synthesis or LDL receptor activity up to a concentration of 10 microM. PGE1, PGE2, and Iloprost, but not PGF2 alpha, led to an increase in the concentration of intracellular cyclic AMP. Dibutyryl cyclic AMP mimicked the effects of the E-prostaglandins and Iloprost on the LDL receptor activity. The results suggest that PGE1, PGE2, and prostacyclin affect LDL receptor activity and cholesterol synthesis and, therefore, may play a role in the regulation of cholesterol homeostasis and in the development of atherosclerosis.  相似文献   

3.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F2alpha binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 x 10(-9)M and 1.1 x 10(-8)M for PGE1 and PGF2alpha, respectively. Competition of several natural prostaglandins for the PGE1 and PGF2alpha bovine luteal specific binding sites indicates specificity for the 9-keto or 9alpha-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5, 6-cis-double bond as well. Bovine luteal function was affected following treatment of heifers with 25 mg PGF2alpha as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contract, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF2alpha relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF2alpha induced luteolysis in the bovine, PGF2alpha relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

4.
Using high density and low density lipoproteins (HDL and LDL) labeled with fluorescent analogues of phosphatidylcholine or sphingomyelin it was found that low amounts (10–12 M) of prostaglandins E1 and F2 induced different structural rearrangements of the lipoprotein surface, whereas prostaglandins E2 and F1 had no effect. The effects of prostaglandin E1 on HDL were largely paralled by those of this prostaglandin on synthetic recombinants prepared from pure apolipoprotein A1, phospholipids and cholesterol and were demonstrated to be caused by prostaglandin-apolipoprotein interaction. The interaction resembled that of a ligand with a specific receptor protein because it was specific, reversible, concentration and temperature dependent and saturable. However the retaining capacity of HDL or LDL for prostaglandin E1 as determined by equilibrium dialysis was very low and a single prostaglandin E1 molecule was able to induce structural changes in large numbers of discrete lipoprotein particles. To explain this remarkable fact a non-equilibrium model of ligand-receptor interaction is proposed. According to that model in open systems characterized by weak ligand-receptor binding, high diffusion rate of the ligand and long relaxation times which exceed the interval between two successive receptor occupations, the ligand-induced changes will accumulate, resulting in transformation of the system into a new state which may be far away from equilibrium. It is emphasized that the low mobility of lipids constituting the environment of the receptor protein plays a critcal role in this type of signal amplification.It was further demonstrated that the PGE1-induced changes of the lipoprotein surface resulted in an enhancement of LDL-to-HDL transfer of cholesterol esters and phosphatidylcholine especially in the presence of serum lipid transfer proteins. The acceleration of the interlipoprotein transfer caused by prostaglandin E1 in turn increases the rate of cholesterol esterification in serum. It is suggested that in such a way prostaglandin E1 may influence the homeostasis of cholesterol.Abbreviations LDL low density lioproteins - HDL high density lipoproteins - PG prostaglandin - ASM anthrylvinyl-labeled sphingomyelin (N-12-(9-anthryl)-11-trans-dodecanoylsphingosin-1-phosphocholine - APC anthrylvinylphosphatidylcholine (1-radyl-2-[(9-anthryl)-11-transdodecanoyl)-sn-glycerophosphocholine - NAP-SM nitroazidophenyl labeled sphingomyelin (N-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sphingosin-1-phosphocholine) - NAP-PC adizophenyl labeled phosphatidylcholine (1-radyl-2-[N-(2-nitro-4azidophenyl)-12-aminododecanoyl]-sn-glycero-3-phosphocholine - DPPC dipalmitoylphosphatidylcholine - P fluorescence polarization - E parameter of tryptophanyl to ASM resonance energy transfer - LEP lipid-exchange protein  相似文献   

5.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2alpha, 6 keto PGF1alpha (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2alpha) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10(-8)M. PGI2 and 6 keto PGF1alpha had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

6.
Several factors and hormones are thought to play a role in the growth control of endometrial cells. We have shown that prostaglandin F2 alpha (PGF2 alpha) is a growth factor for primary cultures of rabbit endometrial cells grown in serum-free, chemically defined medium and that prostaglandin E1 (PGE1) antagonizes the PGF2 alpha induction of growth (Orlicky et al., 1986). [3H]PGF2 alpha binds to whole cells in a time (optimal approximately 30 min)- and temperature-dependent (optimal 37 degrees C), disassociable (90% disassociable within 30 min), saturable (Kd1 = 4.9 X 10(-8) M, n1 = 1.2 X 10(5) molecules/cell; Kd2 = 2.6 X 10(-7) M, n2 = 3.0 X 10(5) molecules/cell), and specific manner. [3H]PGE1 binds in a time-dependent (optimal 25 min), disassociable (90% disassociable within 10 min), saturable (Kd = 6.4 X 10(-8) M, n = 1.2 X 10(5) molecules/cell), and specific manner. This specific binding of [3H]PGF2 alpha and [3H]PGE1 is down-regulatable by prior treatment of the cultures with unlabeled ligand, and up-regulatable by prior treatment of the cultures with indomethacin to inhibit endogenous PG synthesis. Proteolytic enzyme treatment for 2 min reduces the specific binding of PGF2 alpha by 75%. PGE1 stimulates intracellular cAMP synthesis and accumulation in a time (optimal 10 min)- and concentration (half-maximal stimulation at 10(-6) M)-dependent manner but has no effect on intracellular cGMP. PGF2 alpha has no effect on either intracellular cAMP or cGMP in this system. We describe here for the first time the analysis at a biochemical level of the interaction between two prostaglandins, antagonistic to each other in terms of growth regulation.  相似文献   

7.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have proposed that two of the endogenously synthesized endometrial prostaglandins, prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E1 (PGE1), play a regulatory role in growth control of the endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used here to examine the effects of the tumor-promoting, diacylglycerol mimicking, phorbol ester, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the prostaglandin control of cell proliferation. TPA treatment of these cultures results in: a decrease in control levels of proliferation and complete inhibition by TPA of PGF2 alpha stimulated DNA synthesis; a reduction in [3H]PGF2 alpha binding with short term treatment but an increase to above control binding level with long term treatment; an inhibition of the normal PGF2 alpha stimulated inositol polyphosphate synthesis; and a small increase in accumulation of PGF2 alpha in the culture media. Furthermore, in this culture system, TPA does not down regulate [3H]PGE1 binding; it does not alter the normal PGE1 stimulation of cAMP synthesis; and it has no effect on the normal endogenous PGE1 synthesis by these cultures. The above results are consistent with our previous observations that PGF2 alpha works through the intracellular messengers inositol polyphosphate/diacylglycerol whereas PGE1 works through cAMP.  相似文献   

9.
Using high-density lipoproteins (HDL) labeled with a fluorescent phospholipid probe (an anthrylvinyl-labeled analogue of sphingomyelin) it was found that low amounts (10(-12) M) of the prostaglandins E1 and F2 alpha induced different structural changes of the HDL surface, whereas prostaglandin E2 had no effect. The effects of prostaglandin E1 on HDL were largely paralleled by those of this prostaglandin on synthetic recombinants prepared from apolipoprotein A1, phospholipids and cholesterol. The prostaglandin E1-HDL interaction resembled that of a ligand with a receptor site because it was specific, reversible, concentration- and temperature-dependent and saturable. However, the maximal HDL retaining capacity for prostaglandin E1 as determined by equilibrium dialysis was very low, and a single prostaglandin E1 molecule was able to induce structural changes in a large number of discrete lipoprotein particles. To explain this remarkable fact, a non-equilibrium model of ligand-receptor interaction is proposed. According to this model in open systems characterized by a short life-time of the ligand-receptor complex, high diffusion rates of the ligand and long relaxation times which exceed the interval between two successive ligand-receptor occupations, the ligand-induced changes will accumulate, resulting in amplification of the primary biological signal. It is emphasized that the low mobility of lipids constituting the environment of the receptor protein plays a critical role in this type of signal amplification.  相似文献   

10.
Studies were carried out to investigate the effects of prostaglandins (PG) in vitro on adrenal microsomal steroid and drug metabolism in the guinea pig. The addition of PGE1, PGE2, PGA1, PGF1 alpha or PGF2 alpha to isolated adrenal microsomes produced typical type I difference spectra. The sizes of the spectra (delta A385-420) produced by prostaglandins were smaller than those produced by various steroids including progesterone, 17-hydroxyprogesterone and 11 beta-hydroxyprogesterone. However, the affinities of prostaglandins and steroids for adrenal microsomal cytochrome P-450, as estimated by the spectral dissociation constants, were similar. Prior addition of prostaglandins to isolated adrenal microsomes did not affect steroid binding to cytochrome P-450 or the rate of steroid 21-hydroxylation. In contrast, prostaglandins inhibited adrenal metabolism of ethylmorphine and diminished the magnitude of the ethylmorphine-induced spectral change in adrenal microsomes. The results indicate that prostaglandins inhibit adrenal drug metabolism by interfering with substrate binding to cytochrome P-450. Since 21-hydroxylation was unaffected by PG, different cytochrome P-450 moieties are probably involved in adrenal drug and steroid metabolism.  相似文献   

11.
Highly purified preparations of small and large bovine luteal cells were utilized to examine the effects of prostaglandins F2 alpha (PGF2 alpha), E2 (PGE2) and I2 (PGI2) analog on progesterone production. Corpora lutea were obtained from Holstein heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. Progesterone accumulation was determined in 1 x 10(5) small and 5 x 10(3) large cells after 2 and 4 h incubations respectively. Progesterone synthesis was increased (p less than 0.05) in the small cells by the increasing levels of PGF2 alpha, PGE2, carba-PGI2 and LH. PGF2 alpha, but not PGE2 or carba-PGI2 increased (p less than 0.05) LH-stimulated progesterone production. There was no interaction of various combinations of prostaglandins on progesterone production in the small cells. In the large cells, PGF2 alpha had no effect on basal progesterone production. However, it inhibited LH-stimulated progesterone synthesis. In contrast, PGE2 and carba-PGI2 stimulated (p less than 0.05) basal progesterone production in the large cells. In the presence of LH, high levels of carba-PGI2 inhibited (p less than 0.05) progesterone synthesis. The PGE2 and PGI2-stimulated progesterone production in the large luteal cells was also inhibited in the presence of PGF2 alpha. These data suggest all of the prostaglandins used exert a luteotropic action in the small cells. In the large cells only PGE2 and carba-PGI2 are luteotropic, while PGF2 alpha exerts a luteolytic action. The effects of the prostaglandins in the small and large luteal cells suggest that their receptors are present in both cell types.  相似文献   

12.
Several prostaglandins inhibit the cAMP response to glucagon and beta-adrenergic stimulation in hepatocytes. To probe the mechanism of this inhibition, we have examined in primary hepatocyte cultures how pretreatment with pertussis toxin (islet-activating protein) influences the ability of the cells to respond to hormones and prostaglandins. Pertussis toxin augmented the effects of glucagon, epinephrine and isoproterenol, and also markedly enhanced the cAMP response to prostaglandin E1 (PGE1). Furthermore, whereas PGE1, PGE2, PGI2 and PGF2 alpha attenuated the cAMP responses to glucagon in control cultures, this inhibition was abolished in cells pretreated with pertussis toxin. A more detailed comparison was made of the effects of PGE1 and PGF2 alpha. In cells not treated with pertussis toxin, both these prostaglandins at high concentrations reduced the cAMP response to glucagon and isoproterenol by approximately 50%, but dose-effect curves showed that PGE1 was about 100-fold more potent as an inhibitor than PGF2 alpha. Pertussis toxin abolished the inhibitory effects of PGE1 and PGF2 alpha with almost identical time and dose requirements. The results obtained with PGE1, PGE2, PGI2 and PGF2 alpha suggest that prostaglandins of different series attenuate hormone-activable adenylate cyclase in hepatocytes through a common mechanism, dependent on the inhibitory GTP-binding protein.  相似文献   

13.
The physiological effects of prostaglandins (PGs) are mediated through their interactions with specific binding sites (receptors) on effector cells. Since such receptors potentially regulate the action of PGs on the kidney, the distribution and properties of renal PG receptors in the rat were examined. The distribution of PGE2, PGE1, and PGF2 alpha receptors along the nephron was not uniform; the outer medulla had by far the greatest density of sites, followed by the inner medulla and cortex. Receptors were found exclusively in the particulate fractions, of which the 40,000g pellet had the highest specific activity. In the outer medulla, receptor density calculated from Scatchard plots was 2.12 pmol/mg for PGE2, 1.12 for PGE1, and 0.44 for PGF2 alpha; the KD's were similar for all prostaglandins. The conditions for optimal in vitro binding of PGE2 and PGF2 alpha by outer medullary membranes were investigated. In vivo administration of 16,16'-dimethyl-PGE2 resulted in a dose-dependent "down" regulation of PGE2 binding to outer medullary membranes due to changes in both the number and affinities of receptors. Changes in the numbers and/or properties of PG receptors may be an important mechanism for regulating the effects of PGs and renal function under normal and pathologic conditions.  相似文献   

14.
This study provided a pharmacological evaluation of prostaglandin binding to bovine luteal plasma membrane. It was found that [3H]PGF2 alpha' [3H]PGE2' [3H]PGE1 and [3H]PGD2 all bound with high affinity to luteal plasma membrane but had different specificities. Binding of [3H]PGF2 alpha and [3H]PGD2 was inhibited by non-radioactive PGF2 alpha (IC50 values of 21 and 9 nmol l-1, respectively), PGD2 (35 and 21 nmol l-1), and PGE2 (223 and 81 nmol l-1), but not by PGE1 (> 10,000 and 5616 nmol l-1). In contrast, [3H]PGE1 was inhibited by non-radioactive PGE1 (14 nmol l-1) and PGE2 (7 nmol l-1), but minimally by PGD2 (2316 nmol l-1) and PGF2 alpha (595 nmol l-1). Binding of [3H]PGE2 was inhibited by all four prostaglandins, but slopes of the dissociation curves indicated two binding sites. Binding of [3H]PGE1 was inhibited, resulting in low IC50 values, by pharmacological agonists that are specific for EP3 receptor and possibly EP2 receptor. High affinity binding of [3H]PGF2 alpha required a C15 hydroxyl group and a C1 carboxylic acid that are present on all physiological prostaglandins. Specificity of binding for the FP receptor depended on the C9 hydroxyl group and the C5/C6 double bond. Alteration of the C11 position had little effect on affinity for the FP receptor. In conclusion, there is a luteal EP receptor with high affinity for PGE1' PGE2' agonists of EP3 receptors, and some agonists of EP2 receptors. The luteal FP receptor binds PGF2 alpha' PGD2 (high affinity), and PGE2 (moderate affinity) but not PGE1 due to affinity determination by the C9 and C5/C6 moieties, but not the C11 moiety.  相似文献   

15.
Human and serum lipoproteins interaction with steroid hormones (corticosterone and hydrocortisone) were studied. Methods of fluorescence quenching titration and equilibrium dialysis were used for quantitative evaluation of VLDL, LDL and HDL glucocorticoids binding ability. Association constants were found to be 0.6-2.0 x 10 M for corticosterone and 4.0-8.0 x 10 M for hydrocortisone. The number of binding sites ranged from 3 to 300 for different classes of lipoproteins. Our data suggest high specificity of serum lipoproteins binding with corticosterone and hydrocortisone.  相似文献   

16.
Freshly isolated rat hepatocytes bind the solely apolipoprotein B-containing human low density lipoprotein (LDL) with a high-affinity component. After 1 h of incubation less than 30% of the cell-associated human LDL is internalized and no evidence for any subsequent high-affinity degradation was obtained. Scatchard analysis of the binding data for human 125I-labeled LDL indicates that the high-affinity receptor for human LDL on rat hepatocytes possesses a Kd of 2.6 x 10(-8)M, while the binding is dependent on the extracellular Ca2+ concentration. Competition experiments indicate that both the apolipoprotein B-containing lipoproteins (human LDL and rat LDL) as well as the apolipoprotein E-containing lipoproteins (human HDL and rat HDL) do compete for the same surface receptor. It is concluded that hepatocytes freshly isolated from untreated rats do contain, in addition to the earlier described rat lipoprotein receptor which does not interact with human apolipoprotein B-containing LDL, a high-affinity receptor which interacts both with solely apolipoprotein B-containing human LDL and apolipoprotein E-containing lipoproteins.  相似文献   

17.
Prostaglandin F2 alpha (PGF2 alpha) is a well-known luteolytic factor in the rat corpus luteum. To investigate a possible luteal origin of PGF2 alpha, measurements of this prostaglandin were performed in different luteal tissues in vivo. Prostaglandin E2 (PGE2) and the stable metabolite of prostacyclin, 6-keto-PGF1 alpha, were assayed simultaneously. Corpora lutea of different ages from 57 pregnant and pseudopregnant rats (mated with sterile males) were rapidly excised, dissected in 0 degree C indomethacin solution, homogenized, and extracted for prostaglandins with solid-phase extraction cartridges. Prostaglandins were determined by radioimmunoassay. Plasma levels of progesterone and 20 alpha-dihydroprogesterone were also monitored. In the adult pseudopregnant rat model, luteolysis occurs at Day 13 +/- 1, and maximal levels of all three prostaglandins were detected on Day 13 of pseudopregnancy: 0.40 +/- 0.02, 2.6 +/- 0.29, and 1.76 +/- 0.24 pmol/mg protein (mean +/- SEM, n=7) for PGF2 alpha, PGE2, and 6-keto-PGF1 alpha respectively. In pregnant rats, on the corresponding day, levels were considerably lower: 0.15 +/- 0.02, 0.90 +/- 0.13, and 0.50 +/- 0.06 pmol/mg protein (mean +/- SEM, n=9, p less than 0.0001), respectively. Luteal levels in pregnant rats showed a continuous decline on Days 13 and 19 for all prostaglandins measured, whereas in pseudopregnant rats an increment of PGF2 alpha was noted between Days 7 and 13 and remained high on Day 19. PGE2 closely followed levels of PGF2 alpha, but at a 5- to 10-fold higher level. The coefficient of correlation between PGF2 alpha and PGE2 in the luteal compartment of both models was 0.87 (p less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Antiabortifacient action of dibenzyloxyindanpropionic acid in mice   总被引:1,自引:0,他引:1  
To evaluate the details of the adrenergic stimulation of urinary prostaglandins in man, ten normal volunteers were given various agonists and antagonists. The effect of 4 hour IV infusions of norepinephrine (NE), NE + phentolamine (PHT), NE + phenoxybenzamine (PHB), NE + prazosin (PZ), isoproterenol (ISO), and PHT alone on urinary PGE2 and PGI2 (6 keto PGF1 alpha) were determined. PGE2 and 6 keto PGF1 alpha were measured by radioimmunoassay from 4 hour urine samples. NE stimulated both PGE2 (196 +/- 40 to 370 +/- 84 ng/4 hrs/g creatinine and 6 keto PGF1 alpha (184 +/- 30 to 326 +/- 36), both p less than 0.01. In contrast, ISO had no effect on either PGE2 or 6 keto PGF1 alpha excretion. Alpha blockade with PHT. PHB, or PZ inhibited the NE induced systemic pressor effect. However, the effect of the alpha blockers on the NE induced stimulation of PGE2 and 6 keto PGF1 alpha varied. PHT did not alter the NE stimulated PGE2 or 6 keto PGF1 alpha release (370 +/- 84 vs. 381 +/- 80) PGE2 and (326 +/- 50 vs. 315 +/- 40) 6 keto PGF1 alpha both p greater than 0.2). PHT alone stimulated only 6 keto PGF1 alpha. PHB and the specific alpha 1 antagonist PZ similarly eliminated the NE induced prostaglandin release. These results suggest that adrenergically mediated urinary prostaglandin release in man is via an alpha receptor with alpha 1 characteristics.  相似文献   

19.
The effects of several prostaglandins on the proliferation of secondary cultures of osteoblast-like cells, as measured by the incorporation of [3H]-thymidine into DNA and total DNA content of the cultures, were studied. PGE2 in the concentration range of 10(-8) to 10(-5) M caused a direct, dose-related stimulation of proliferation, while PGF2 alpha and PGD2 were less effective. PGA2 and 6-keto-PGF1 alpha were inactive in the osteoblasts in concentrations of 10(-7) to 10(-6) M. A similar stimulation profile was observed for the induction of ornithine decarboxylase (ODC, L-ornithine decarboxy-lyase, EC 4.1.1.17): the order of potency of the different prostaglandins in the induction of the ODC activity was PGE2 greater than PGF2 alpha = PGD2; again, PGA2 and 6-keto-PGF1 alpha were without effect in concentrations up to 10(-6) M. These results show that the primary prostaglandins, in order of potency PGE2 greater than PGF2 alpha = PGD2, can have a direct, stimulatory effect on the proliferation of osteoblasts, which is closely related to the induction of ODC activity.  相似文献   

20.
The effects of histamine and its antagonists on the release of prostaglandin E and F2alpha (PGE and PGF2alpha) and the 15-keto-13,14-dihydro PGF2alpha/E (metabolites) were examined in minced and whole perfused guinea pig lung. Lung fragments released considerable amounts of prostaglandins into the incubation media with time alone: parenchyma more PGF2alpha than PGE, trachea more PGE than PGF2alpha. The levels of PGF2alpha found in the filtrates of both tissues on per gram basis were about the same, whereas the concentrations of PGE were several fold higher in the media of incubated trachea. In contrast to lung, trachea released only trace amounts of metabolites. These differences in synthesis and turnover are probably of importance for maintenance of the adequate ventilation-perfusion ratios. The process of sensitization caused a significant increase in the outflows of PGF2alpha and metabolites from the lung fragments. The PGE to PGF2alpha ratio was decreased in both parenchymal and tracheal tissues. Increased spontaneous release of prostaglandins was also found in whole perfused sensitized lung. This was consistent with the hypothesis that sensitization with antigen alters the biochemical properties of the organism. Incubation of lung fragments with histamine had only a small additional effect on the liberation of prostaglandins, since the baseline release was high due to the trauma of mincing. However, histamine perfusion of whole lung caused severalfold increase in the outflows of prostaglandins. Pretreatment with pyrilamine (histamine receptor 1 antagonist) decreased the subsequent release of PGF2alpha by histamine. On the other hand, pretreatment with metiamide (histamine receptor 2 antagonist) diminished the subsequent release of PGE. It is suggested that stimulation of histamine receptor 1 is predominantly (but not solely) related to the synthesis of PGF2alpha, and stimulation of the receptor 2 is related to the synthesis of PGE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号