首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The centripetal force in speed skating the curves has to be delivered by the push off force which also does the external work to maintain the speed. Based on the geometry of the speed skating oval and the sideward push off characteristics in speed skating, a mathematical model of the power output in skating the curves was deduced. The power required to follow the curve is dependent on the mean speed in the curve, the work per stroke and the radius of the speed skating oval. Measurements (by means of film and video analysis) during the 5000 m races at the European Championships for ladies (n = 16) yielded on the one hand power from the geometrical model and on the other hand power losses due to air- and ice- friction. The difference between power delivered and power lost is used by the skaters to increase their speed. The difference between predicted power and measured power used to increase the kinetic energy of c.g. was only 3% thereby providing strong support for the validity of the model. The analysis suggested that skaters who want to accelerate in the curves should increase their work per stroke. The model can be a useful tool to provide insight into this form of human locomotion and its optimization under competitive conditions.  相似文献   

2.
Prediction of speed skating performance with a power balance model requires assumptions about the kinetics of energy production, skating efficiency, and skating technique. The purpose of this study was to evaluate these parameters during competitive imitations for the purpose of improving model predictions. Elite speed skaters (n = 8) performed races and submaximal efficiency tests. External power output (P(o)) was calculated from movement analysis and aerodynamic models and ice friction measurements. Aerobic kinetics was calculated from breath-by-breath oxygen uptake (Vo(2)). Aerobic power (P(aer)) was calculated from measured skating efficiency. Anaerobic power (P(an)) kinetics was determined by subtracting P(aer) from P(o). We found gross skating efficiency to be 15.8% (1.8%). In the 1,500-m event, the kinetics of P(an) was characterized by a first-order system as P(an) = 88 + 556e(-0.0494t) (in W, where t is time). The rate constant for the increase in P(aer) was -0.153 s(-1), the time delay was 8.7 s, and the peak P(aer) was 234 W; P(aer) was equal to 234[1 - e(-0.153(t-8.7))] (in W). Skating position changed with preextension knee angle increasing and trunk angle decreasing throughout the event. We concluded the pattern of P(aer) to be quite similar to that reported during other competitive imitations, with the exception that the increase in P(aer) was more rapid. The pattern of P(an) does not appear to fit an "all-out" pattern, with near zero values during the last portion of the event, as assumed in our previous model (De Koning JJ, de Groot G, and van Ingen Schenau GJ. J Biomech 25: 573-580, 1992). Skating position changed in ways different from those assumed in our previous model. In addition to allowing improved predictions, the results demonstrate the importance of observations in unique subjects to the process of model construction.  相似文献   

3.
Coordination of leg muscles during speed skating   总被引:6,自引:0,他引:6  
Five speed skaters of elite performance level and six speed skaters of trained level were subjected to an inverse dynamical analysis during speed skating. Push-off forces were registered by means of special skates. Myoelectric activity (EMG) of ten leg muscles and cinematographic data were recorded. Linked segment modelling yielded net joint moments and joint powers. The speed skating technique is characterized by a typical horizontal position of the trunk and a suppression of a plantar flexion during the push-off. This technique, necessary to reduce external friction, constrains the transfer of rotation in joints to translation of the mass center of the body. In spite of constrained push-off, the EMG levels of the leg muscles show a proximo-distal temporal order which to a certain extent is comparable to that previously found in an unconstrained vertical jump. This proximo-distal sequence is also reflected by the time courses of the net moment and net power output in hip, knee and ankle joints. The temporal sequence in activation levels of activated muscles is not different between elite and trained speed skaters. The difference in performance level between these groups obviously has an origin in the ability of the elite speed skaters to realise larger net joint moments. Differences in net joint moments and in kinematics result in a higher power output and a lower air frictional force for the elite than for the trained speed skaters.  相似文献   

4.
Acceptance of the klap speed skate was fully realized on the world speed skating scene in 1997. However, one of the most important unknowns regarding the klapskate was the positioning of the point of foot rotation (pivot point), which is believed to play an important role in optimizing klapskate performance. The purposes of this study were to explore the ankle, knee, and hip joint mechanical changes that occurred when the pivot point location was modified, and to determine whether maximal ankle torques provide predictive ability as to where the optimal pivot point positioning is for a skater. We tested 16 proficient skaters at three pivot point PP) locations, ranging from just in front of the metatarsal-phalangeal joint to just in front of the first phalangeal joint. Of the 16 skaters, 10 were tested at a fourth position; tip of the toe. Push phase kinetics and kinematics were measured on a modified slide board. The optimal PP for each skater was defined as the position that allowed him to generate the most total push energy. Maximum voluntary static torque measures of the ankle and knee were collected on a Biodex dynamometer. Overall, anterior pivot point shifting led to a significant increase in ankle energy generated and a decrease in knee energy generated, with no significant change at the hip joint. We found no significant correlations between the static strength measures and the skaters' optimal pivot points.  相似文献   

5.
Eight well trained marathon skaters performed all-out exercise tests during speed skating on ice and roller skating. To compare these skating activities in relation to the concept of training specificity, relevant physiological (VO2, VE, RER and heart rate) and biomechanical variables (derived from film and video analysis) were measured. There were no significant differences between oxygen uptake (50.5 +/- 8.0 and 53.3 +/- 6.7 ml.min-1.kg-1), ventilation (102.4 +/- 11.2 and 116.0 +/- 11.1 1.min-1) or heart rate (174 +/- 12.2 and 176 +/- 14.5 min-1) between speed and roller skating. In roller skating a higher RER (1.16 +/- 0.1 cf. 1.05 +/- 0.1) was found. Power, work per stroke and stroke frequency were equal. Due to a higher coefficient of friction the maximal roller skating speed was lower. The effectiveness of push-off and parameters concerning the skating techniques showed no differences. In roller skating a 7.5% higher angle of the upper leg in the gliding phase occurred. It is speculated that the blood flow through the extensor muscles might be higher in roller skating. It is concluded that roller skating can be considered as a specific training method which may be used by trained speed skaters in the summer period.  相似文献   

6.
Ice friction during speed skating.   总被引:2,自引:0,他引:2  
During speed skating, the external power output delivered by the athlete is predominantly used to overcome the air and ice frictional forces. Special skates were developed and used to measure the ice frictional forces during actual speed skating. The mean coefficients of friction for the straights and curves were, respectively, 0.0046 and 0.0059. The minimum value of the coefficient of ice friction was measured at an ice surface temperature of about -7 degrees C. It was found that the coefficient of friction increases with increasing speed. In the literature, it is suggested that the relatively low friction in skating results from a thin film of liquid water on the ice surface. Theories about the presence of water between the rubbing surfaces are focused on the formation of water by pressure-melting, melting due to frictional heating and on the 'liquid-like' properties of the ice surface. From our measurements and calculations, it is concluded that the liquid-like surface properties of ice seem to be a reasonable explanation for the low friction during speed skating.  相似文献   

7.
The purpose of this study was to identify off-ice variables that would correlate to on-ice skating sprint performance and cornering ability. Previous literature has not reported any off-ice testing variables that strongly correlate to on-ice cornering ability in ice hockey players. Thirty-six male hockey players aged 15-22 years (mean +/- SD: 16.3 +/- 1.7 years; weight = 70.8 +/- 10.4 kg; height = 175.6 +/- 4.1 cm) with an average of 10.3 +/- 3.0 years hockey playing experience (most at AA and AAA levels) participated in the study. The on-ice tests included a 35-m sprint and the cornering S test. The off-ice tests included the following: 30-m sprint, vertical jump, broad jump, 3 hop jump, Edgren side shuffle, Hexagon agility, side support, push-ups, and 15-second modified Wingate. The on-ice sprint test and cornering S test were strongly correlated (r = 0.70; p < 0.001). While many off-ice tests correlated with on-ice skating, measures of horizontal leg power (off-ice sprint and 3 hop jump) were the best predictors of on-ice skating performance, once weight and playing level were accounted for. These 4 variables accounted for a total of 78% (p < 0.0001) of the variance in on-ice sprint performance. No off-ice test accounted for unique variance in S-cornering performance beyond weight, playing level, and skating sprint performance. These data indicate that coaches should include horizontal power tests of off-ice sprint and 3 hop jump to adequately assess skating ability. To improve on-ice skating performance and cornering ability, coaches should also focus on the development of horizontal power through specific off-ice training, although future research will determine whether off-ice improvements in horizontal power directly transfer to improvements in on-ice skating.  相似文献   

8.
The purpose of this study was to investigate technical factors for maintaining skating velocity by kinematic analysis of the skating motion for elite long-distance skaters during the curve phase in official championship races. Sixteen world-class elite male skaters who participated in the 5,000-m race were videotaped with two synchronized high-speed video cameras (250 Hz) in a curve lane by using a panning DLT technique. Three-dimensional coordinates of the body and blades during the first and second halves of the races were collected to calculate kinematic parameters. In the group that maintained greater skating velocity, the thigh angle during the gliding phase of the left stroke during the second half was greater than that during the first half, and the center of mass was located more forward during the second half. Thus, it was suggested that long-distance speed skaters should change the support leg position during the gliding phase in the left stroke of the curve phase under fatigued conditions so that they could extend the support leg with a forward rotation of the thigh and less shank backward rotation.  相似文献   

9.
The aim of the study was to investigate the acute effect of a heavy resisted sprint when used as a preload exercise to enhance subsequent 25-m on-ice sprint performance. Eleven competitive ice-hockey players (mean ± SD: Age = 22.09 ± 3.05 years; Body Mass = 83.47 ± 11.7 kg; Height = 1.794 ± 0.060 m) from the English National League participated in a same-subject repeated-measures design, involving 2 experimental conditions. During condition 1, participants performed a 10-second heavy resisted sprint on ice. Condition 2 was a control, where participants rested. An electronically timed 25-m sprint on ice was performed before and 4 minutes after each condition. The results indicated no significant difference (p = 0.176) between pre (3.940 + 0.258 seconds) and post (3.954 + 0.261 seconds) sprint times in the control condition. The intervention condition, however, demonstrated a significant 2.6% decrease in times (p = 0.02) between pre (3.950 + 0.251 seconds) and post (3.859 + 0.288 seconds) test sprints. There was also a significant change (p = 0.002) when compared to the times of the control condition. These findings appear to suggest that the intensity and duration of a single resisted sprint in this study are sufficient to induce an acute (after 4 minutes of rest) improvement in 25-m sprint performance on ice. For those athletes wishing to improve skating speed, heavy resisted sprints on ice may provide a biomechanically suitable exercise for inducing potentiation before speed training drills.  相似文献   

10.
Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3 D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5–10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body.  相似文献   

11.
The energetics of 2 field tests that reflect physical performance in intermittent sports (i.e., the Interval Shuttle Sprint Test [ISST] and the Interval Shuttle Run Test [ISRT]) were examined in 21 women field hockey players. The ISST required the players to perform 10 shuttle sprints starting every 20 seconds. During the ISRT, players alternately ran 20-m shuttles for 30 seconds and walked for 15 seconds with increasing speed. Anaerobic and aerobic power tests included Wingate cycle sprints and a .V(O2)max cycle test, respectively. Based on correlation and regression analyses, it was concluded that for the ISST, anaerobic energetic pathways contribute mainly to energy supply for peak sprint time, while aerobic energetic pathways also contribute to energy supply for total sprint time. Energy during the ISRT is supplied mainly by the aerobic energy system. Depending on the aspect of physical performance a coach wants to determine, the ISST or ISRT can be used.  相似文献   

12.
The control of speed in elite female speed skaters   总被引:20,自引:0,他引:20  
From ten participants in the World Championships Speed Skating for Ladies 1983 a number of selected mechanical parameters were measured and correlated with speed and external power. The parameters were derived by means of video and film analysis of strokes at the four distances: 500 m, 1500 m, 3000 m and 5000 m. The results show that these speed skaters control the different speeds at different distances mainly by changing their stroke frequency and not by changing the amount of work per stroke. However, at the same distance the relatively small interindividual differences in performance level appeared not to be correlated to differences in stroke frequency but were correlated to differences in push-off mechanics. Better performers gain some potential energy during the gliding phase and show a more horizontally directed push-off in the frontal plane. Maximal knee extension velocity did not show any correlation with performance. The fact that this might be connected to the absence of a plantar flexion during push-off is discussed.  相似文献   

13.
Seven female and eight male elite junior skaters performed cycle ergometer tests at four different times during the 1987/1988 season. The tests consisted of a Wingate-type 30-s sprint test and a 2.5-min supramaximal test. The subjects were tested in February, May and September 1987 and in January 1988. Maximal oxygen consumption was measured during the 2.5-min test. With the exception of the maximal oxygen consumption of the women in May which was about 6% lower than in the other three tests, no seasonal changes in the test results could be observed--this, in spite of a distinct increase in training volume (from 10 to more than 20 h.week-1) and training intensity in the course of the season. When the test data were compared to those of elite senior skaters, it appeared that the junior skaters showed the same values for mean power output during the sprint test [14.2 (SD 0.4) W.kg-1 for the men and 12.6 (SD 0.5) W.kg-1 for the women] and maximal oxygen consumption [63.1 (SD 2.8) ml.kg-1.min-1 for the men and 55.3 (SD 3.5) ml.kg-1.min-1 for the women, respectively] as found for senior skaters. It seemed, therefore, that the effects of training in these skaters had already levelled off in the period before they participated in this investigation. In contrast to previous studies, no relationship could be shown between the test results and skating performance. This was most likely due to the homogenous character of the groups (mean standard deviations in power and oxygen consumption were only 5%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Previous ice hockey research has focused on physiological profiles and determinants of skating speed, but few studies have examined the association of preseason player evaluations with a measure of season-long performance. Understanding which tests are most predictive of player performance could help coaches organize practice and training more effectively. The purpose of this study was to describe physical characteristics and skill levels of 24 members of an NCAA Division I men's ice hockey team and relate them to game performance over the course of a season as measured by plus/minus (+/-) score. Subjects performed a battery of preseason tests including treadmill maximal aerobic capacity, body fat, leg press, push-ups, bench press, chin-ups, and sprinting ability both on and off ice. Pearson and Spearman correlations were used to examine correlations between preseason measures and +/- score. One coach also subjectively grouped the top and bottom 6 players, and analysis of variance was used to examine any differences in preseason measures and +/- score between these 2 groups. Leg press, chin-ups, bench press, and repeat sprint performance were significantly correlated with +/- score (r = 0.554, 0.462, 0.499, and -0.568, respectively). Teams with limited time and resources may choose to perform these tests to evaluate player potential efficiently. Only +/- score differed between top and bottom players suggesting that +/- accurately reflected the coach's perception of player success in this sample.  相似文献   

15.
The objective of this study was to determine the relationship between specific performance measures and hockey skating speed. Thirty competitive secondary school and junior hockey players were timed for skating speed. Off-ice measures included a 40-yd (36.9-m) sprint, concentric squat jump, drop jump, 1 repetition maximum leg press, flexibility, and balance ratio (wobble board test). Pearson product moment correlations were used to quantify the relationships between the variables. Electromyographic (EMG) activity of the dominant vastus lateralis and biceps femoris was monitored in 12 of the players while skating, stopping, turning, and performing a change-of-direction drill. Significant correlations (p < 0.005) were found between skating performance and the sprint and balance tests. Further analysis demonstrated significant correlations between balance and players under the age of 19 years (r = -0.65) but not those over 19 years old (r = -0.28). The significant correlations with balance suggested that stability may be associated with skating speed in younger players. The low correlations with drop jumps suggested that short contact time stretch-shortening activities (i.e., low amplitude plyometrics) may not be an important factor. Electromyographic activities illustrated the very high activation levels associated with maximum skating speed.  相似文献   

16.
Although of prime ecological relevance, acceleration capacity is a poorly understood locomotor performance trait in terrestrial vertebrates. No empirical data exist on which design characteristics determine acceleration capacity among species and whether these design traits influence other aspects of locomotor performance. In this study we explore how acceleration capacity and sprint speed have evolved in Anolis lizards. We investigate whether the same or different morphological traits (i.e., limb dimensions and muscle mass) correlate with both locomotor traits. Within our sample of Anolis lizards, relative sprint speed and acceleration capacity coevolved. However, whereas the variation in relative acceleration capacity is primarily explained by the variation in relative knee extensor muscle mass, the variation in relative sprint speed is correlated to the variation in relative femur, tibia, and metatarsus length as well as knee extensor muscle mass. The fact that the design features required to excel in either performance trait partly overlap might explain the positive correlation between the variation in relative sprint speed and acceleration capacity. Furthermore, our data show how similar levels of sprint performance can be achieved through different morphological traits (limb segment lengths and muscle mass) suggesting that redundant mapping has potentially played a role in mitigating trade-offs.  相似文献   

17.
The purpose of this study was to examine the relationship of off-ice performance measures with on-ice turning, crossover, and forward skating performance in high school male hockey players. Thirty-eight players aged 15-18 (mean age ± SD: 16.4 ± 1.1 years; height: 177.9 ± 6.8 cm; weight: 72.5 ± 8.9 kg) participated in this study. On-ice tests included a forward sprint, short radius turns, and crossover turns. Off-ice tests included a 40-yd sprint, vertical jumps, horizontal jumps, and a dynamic balance test using a Y balance testing device. Five off-ice variables correlated with all on-ice performance measures. These variables included the 40-yd sprint, lateral bound right to left limb, double limb horizontal hop, balance on right in posterolateral direction, and composite balance performance on the right. Hierachical regression demonstrated that off-ice sprint time was most predictive of on-ice skating performance, accounting for 65.4% of the variability in forward skate time, 45.0% of the variability in left short radius time, 21.8% of the variance in right short radius time, 36.2% of the variance in left crossover time, and 30.8% of the variability in right crossover time. When using off-ice tests to evaluate hockey players, the 40-yd sprint is the best predictor of skating performance. Based on our regression equation, for every 1-second difference in the 40-yd sprint time, there will be approximately a 0.6-second difference in the 34.5-m on-ice sprint. The 40-yd sprint predicts forward skating performance and to a lesser degree; it also predicts crossover and tuning performance.  相似文献   

18.
The aim of this study was to examine the effects of sprint running training on sloping surfaces (3 degrees ) on selected kinematic and physiological variables. Thirty-five sport and physical education students were randomized into 4 training groups (uphill-downhill, downhill, uphill, and horizontal) and a control group, with 7 participants in each group. Pre- and posttraining tests were performed to examine the effects of 6 weeks of training on the maximum running speed at 35 m, step rate, step length, step time, contact time, eccentric and concentric phase of contact time, flight time, selected posture characteristics of the step cycle, and peak anaerobic power performance. Maximum running speed and step rate were increased significantly (p < 0.05) in a 35-m running test after training by 0.29 m.s(-1) (3.5%) and 0.14 Hz (3.4%) for the combined uphill-downhill group and by 0.09 m.s(-1) (1.1%) and 0.03 Hz (2.4%) for the downhill group, whereas flight time shortened only for the combined uphill-downhill training group by 6 milliseconds (4.3%). There were no significant changes in the horizontal and control groups. Overall, the posture characteristics and the peak anaerobic power performance did not change with training. It can be suggested that the novel combined uphill-downhill training method is significantly more effective in improving the maximum running velocity at 35 m and the associated horizontal kinematic characteristics of sprint running than the other training methods are.  相似文献   

19.
Speed and acceleration are essential for field sport athletes. However, the mechanical factors important for field sport acceleration have not been established in the scientific literature. The purpose of this study was to determine the biomechanical and performance factors that differentiate sprint acceleration ability in field sport athletes. Twenty men completed sprint tests for biomechanical analysis and tests of power, strength, and leg stiffness. The sprint intervals analyzed were 0-5, 5-10, and 0-10 m. The subjects were split into a faster and slower group based on 0- to 10-m velocity. A 1-way analysis of variance determined variables that significantly (p ≤ 0.05) distinguished between faster and slower acceleration. All subject data were then pooled for a correlation analysis to determine factors contributing most to acceleration. The results showed that 0- to 5-m (~16% difference) and 0- to 10-m (~11% difference) contact times for the faster group were significantly lower. Times to peak vertical and horizontal force during ground contact were lower for the faster group. This was associated with the reduced support times achieved by faster accelerators and their ability to generate force quickly. Ground contact force profiles during initial acceleration are useful discriminators of sprint performance in field sport athletes. For the strength and power measures, the faster group demonstrated a 14% greater countermovement jump and 48% greater reactive strength index. Significant correlations were found between velocity (0-5, 5-10, and 0-10 m) and most strength and power measures. The novel finding of this study is that training programs directed toward improving field sport sprint acceleration should aim to reduce contact time and improve ground force efficiency. It is important that even during the short sprints required for field sports, practitioners focus on good technique with short contact times.  相似文献   

20.
The dynamics of metabolic states in athletes during alternate intense muscular activity was studied. In a laboratory, highly trained athletes (cyclists and speed skaters) performed tests on a bicycle ergometer at the level of the critical power and maximal oxygen consumption. In two additional series of experiments, each of the subjects performed tests at the level of critical power with initial acceleration of 28% of the maximal duration of the 45- and 108-s exercises. During the exercise when the subjects worked at critical power, a succession of metabolic phases was observed: the initial lag period, rapid exponential growth to the level of critical power, subsequent maintenance of the critical power, and, finally, functional disorders of aerobic metabolism, along with increasing local fatigue. We found that a short (no more than 10 s) initial acceleration at the level of power equal to the 45-s maximal exercise is the most efficient for performance at the level of critical power maintenance; this acceleration stimulates the development of aerobic metabolism and does not lead to depletion of anaerobic resources or considerable local exhaustion at the end of the performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号