首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Concanavalin A (ConA) stimulated the phosphorylation of the beta-subunit of the insulin receptor and an Mr-185,000 protein on serine and tyrosine residues in intact H-35 rat hepatoma cells. This Mr-185,000 protein whose phosphorylation was stimulated by ConA was identical to pp185, a protein reported previously to be a putative endogenous substrate for the insulin receptor tyrosine kinase in rat hepatoma cells. In Chinese hamster ovary (CHO) cells transfected with cDNA of the human insulin receptor, tyrosine-phosphorylation of pp185 was strongly enhanced by ConA compared with the controls, suggesting that the induction of tyrosine-phosphorylation of pp185 was due to stimulation of the insulin receptor kinase by ConA. Moreover, monovalent ConA only slightly induced the tyrosine-phosphorylation of pp185, which was enhanced by the addition of anti-ConA IgG, suggesting that ConA stimulated the insulin receptor kinase mainly by the receptor cross-linking or aggregation in intact cells. These data suggest that the insulin-mimetic action of ConA is related to the autophosphorylation and activation of the insulin receptor tyrosine kinase, as well as the subsequent phosphorylation of pp185 in intact cells.  相似文献   

2.
The type I insulin-like growth factor (IGF) receptor, like the insulin receptor, contains a ligand-stimulated protein-tyrosine kinase activity in its beta-subunit. However, in vivo, no substrates have been identified. We used anti-phosphotyrosine antibodies to identify phosphotyrosine-containing proteins which occur during IGF-I stimulation of normal rat kidney and Madin-Darby canine kidney cells labeled with ortho[32P]phosphate. Both cells provide a good system to study the function of the type I IGF receptors because they contain high concentrations of these receptors but no insulin receptors. In addition, physiological levels of IGF-I, but not insulin, stimulated DNA synthesis in growth-arrested cells. IGF-I stimulated within 1 min of tyrosine phosphorylation of two proteins. One of them, with a molecular mass between 97 and 102 kDa, was supposed to be the beta-subunit of the type I IGF receptor previously identified. The other protein had an approximate molecular mass of 185 kDa, which resembled, by several criteria, pp 185, originally identified during the initial response of Fao cells to insulin binding (White, M. F., Maron, R., and Kahn, C. R. (1985) Nature 318, 183-186). These data suggest that tyrosine phosphorylation of pp 185 may occur during activation of both the type I IGF receptor and the insulin receptor, and it could be a common substrate that transmits important metabolic signals during ligand binding.  相似文献   

3.
Insulin rapidly stimulates tyrosine phosphorylation of cellular proteins which migrate between 165 and 190 kDa during SDS-PAGE. These proteins, collectively called pp185, were originally found in anti-phosphotyrosine antibody (alpha PY) immunoprecipitates from insulin-stimulated Fao rat hepatoma cells. Recently, we purified and cloned IRS-1, one of the phosphoproteins that binds to alpha PY and migrates near 180 kDa following insulin stimulation of rat liver [Sun, X. J., et al. (1991) Nature 352, 73-77]. IRS-1 and pp185 undergo tyrosine phosphorylation immediately after insulin stimulation and show an insulin dose response similar to that of insulin receptor autophosphorylation. However, IRS-1 was consistently 10 kDa smaller than the apparent molecular mass of pp185. The pp185 contained some immunoblottable IRS-1; however, cell lysates depleted of IRS-1 with anti-IRS-1 antibody still contained the high molecular weight forms of pp185 (HMW-pp185). Furthermore, the tryptic phosphopeptide map of IRS-1 was distinct from that of HMW-pp185, suggesting that at least two substrates migrate in this region during SDS-PAGE. Moreover, the phosphatidylinositol 3'-kinase and its 85-kDa associated protein (p85) bound to IRS-1 in Fao cells, but weakly or not at all to HMW-pp185. Our results show that Fao cells contain at least two insulin receptor substrates, IRS-1 and HMW-pp185, which may play unique roles in insulin signal transmission.  相似文献   

4.
The effects of insulin and anti-(insulin receptor) monoclonal antibodies on tyrosine phosphorylation were investigated in fibroblasts transfected with human insulin receptor cDNA (NIH 3T3HIR3.5 cells) using anti-phosphotyrosine immunoblotting. Insulin increased levels of tyrosine phosphorylation in two major proteins of molecular mass 97 kDa (pp97, assumed to be the insulin receptor beta-subunit) and 185 kDa (pp185). Insulin-mimetic anti-receptor antibodies also stimulated tyrosine phosphorylation of both pp97 and pp185. The observation of antibody-stimulated pp97 phosphorylation, as detected by immunoblotting, is in contrast with previous data which failed to show receptor autophosphorylation in NIH 3T3HIR3.5 cells labelled with [32P]P1. The effect of insulin on pp97 was maximal within 1 min, but the response to antibody was apparent only after a lag of 1-2 min and rose steadily over 20 min. The absolute level of antibody-stimulated phosphorylation of both pp97 and pp185 after 20 min was only about 20% of the maximum level induced by equivalent concentrations of insulin, even at concentrations of antibody sufficient for full occupancy of receptors. Another insulin-mimetic agent, wheat-germ agglutinin, stimulated receptor autophosphorylation with kinetics similar to those produced by the antibody. It is suggested that the relatively slow responses to both agents may be a function of the dependence on receptor cross-linking. These data are consistent with a role for the insulin receptor tyrosine kinase activity in the mechanism of action of insulin-mimetic anti-receptor antibodies.  相似文献   

5.
Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of [32P]phosphoserine or [32P]phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with [gamma-32P]ATP and Mn2+, very little phosphorylation occurred in the absence of insulin. In this preparation, insulin rapidly stimulated autophosphorylation of the receptor on tyrosine residues only and high performance liquid chromatography analysis of the beta-subunit digested with trypsin revealed one minor and two major phosphopeptides. The elution position of the minor peptide corresponded to that of the major phosphotyrosine-containing peptide obtained from the beta-subunit of the insulin-stimulated receptor labeled in vivo. In contrast, the elution position of one of the major phosphopeptides that occurred during in vitro phosphorylation corresponded to the minor phosphotyrosine-containing peptide phosphorylated in vivo. The other major in vitro phosphotyrosine-containing peptide was not detected in vivo. Our results indicate that: tyrosine phosphorylation of the insulin receptor occurs rapidly following insulin binding to intact cells; the level of tyrosine phosphorylation remains constant for up to 1 h; the specificity of the receptor kinase or accessibility of the phosphorylation sites are different in vivo and in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Insulin treatment of rat H-35 hepatoma cells causes rapid tyrosine phosphorylation of a high molecular weight protein termed pp185 besides autophosphorylation of the beta-subunit of the insulin receptor (IR) in an intact cell system. To elucidate the molecular basis for tyrosine phosphorylation of pp185, cell-free phosphorylation of pp185 was performed using phosphotyrosine-containing proteins (PYPs) purified from detergent-solubilized cell lysates by immunoprecipitation with anti-phosphotyrosine antibody. After insulin treatment of cells, marked increases of tyrosine phosphorylation of pp185 and IR were observed compared to noninsulin-treated cells. Site-specific antibodies that specifically inactivate IR kinase inhibited tyrosine phosphorylation of pp185 as well as the beta-subunit of IR. PYPs purified from detergent-free cell extracts contained pp185 but little IR; tyrosine phosphorylation of pp185 did not occur. Addition of IR kinase purified from human placenta to these PYPs restored insulin-dependent tyrosine phosphorylation of pp185. These results suggest that tyrosine phosphorylation of pp185 is catalyzed directly by IR kinase in this cell-free system.  相似文献   

7.
Insulin stimulated autophosphorylation of the beta-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (alpha-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that alpha-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of alpha-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the beta-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the beta-subunit was mainly (greater than 80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the beta-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.  相似文献   

8.
Tyrosyl phosphorylation is implicated in the mechanism of insulin action. Mutation of the beta-subunit of the insulin receptor by substitution of tyrosyl residue 960 with phenylalanine had no effect on insulin-stimulated autophosphorylation or phosphotransferase activity of the purified receptor. However, unlike the normal receptor, this mutant was not biologically active in Chinese hamster ovary cells. Furthermore, insulin-stimulated tyrosyl phosphorylation of at least one endogenous substrate (pp185) was increased significantly in cells expressing the normal receptor but was barely detected in cells expressing the mutant. Therefore, beta-subunit autophosphorylation was not sufficient for the insulin response, and a region of the insulin receptor around Tyr-960 may facilitate phosphorylation of cellular substrates required for transmission of the insulin signal.  相似文献   

9.
The effect of 12-O-tetradecanoylphorbol-13-acetate (TPA) on the function of the insulin receptor was examined in intact hepatoma cells (Fao) and in solubilized extracts purified by wheat germ agglutinin chromatography. Incubation of ortho[32P]phosphate-labeled Fao cells with TPA increased the phosphorylation of the insulin receptor 2-fold after 30 min. Analysis of tryptic phosphopeptides from the beta-subunit of the receptor by reverse-phase high performance liquid chromatography and determination of their phosphoamino acid composition suggested that TPA predominantly stimulated phosphorylation of serine residues in a single tryptic peptide. Incubation of the Fao cells with insulin (100 nM) for 1 min stimulated 4-fold the phosphorylation of the beta-subunit of the insulin receptor. Prior treatment of the cells with TPA inhibited the insulin-stimulated tyrosine phosphorylation by 50%. The receptors extracted with Triton X-100 from TPA-treated Fao cells and purified on immobilized wheat germ agglutinin retained the alteration in kinase activity and exhibited a 50% decrease in insulin-stimulated tyrosine autophosphorylation and phosphotransferase activity toward exogenous substrates. This was due primarily to a decrease in the Vmax for these reactions. TPA treatment also decreased the Km of the insulin receptor for ATP. Incubation of the insulin receptor purified from TPA-treated cells with alkaline phosphatase decreased the phosphate content of the beta-subunit to the control level and reversed the inhibition, suggesting that the serine phosphorylation of the beta-subunit was responsible for the decreased tyrosine kinase activity. Our results support the notion that the insulin receptor is a substrate for protein kinase C in the Fao cell and that the increase in serine phosphorylation of the beta-subunit of the receptor produced by TPA treatment inhibited tyrosine kinase activity in vivo and in vitro. These data suggest that protein kinase C may regulate the function of the insulin receptor.  相似文献   

10.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

11.
We have studied the reversibility of insulin receptor phosphorylation to establish the relation between this autophosphorylation reaction and the initiation of insulin action and between dephosphorylation and the termination of insulin effects in cells. In cultured Fao hepatoma cells labeled with 32PO4(3-), insulin increased 5-fold the phosphorylation of the beta-subunit of the insulin receptor at serine, threonine, and tyrosine residues. Addition of anti-insulin antiserum to cells incubated with insulin caused dissociation of insulin from the receptor and concurrent dephosphorylation of the beta-subunit. 32PO4(3-) associated with the insulin-stimulated receptor could be decreased by the addition of sodium phosphate to the medium but with a slower time course. Insulin stimulated phosphorylation of insulin receptor purified partially on immobilized wheat germ agglutinin. This reaction utilized [gamma-32P] ATP and occurred exclusively on tyrosine residues. Addition of unlabeled ATP caused a decrease in the amount of PO4(3-) associated with the receptor. Insulin-stimulated phosphorylation was also observed if the receptors were further purified by immunoprecipitation with anti-insulin receptor antibody prior to the phosphorylation reaction; however, addition of unlabeled ATP to this system did not chase the labeled 32PO4(3-) from the beta-subunit. These data are consistent with the notion that phosphorylation and dephosphorylation of the insulin receptor parallel the onset and termination of insulin action. Phosphatase activity involved in the dephosphorylation of the insulin receptor appears to be a glycoprotein because it was retained after partial purification of the receptor on wheat germ agglutinin-agarose; however, this phosphatase activity is distinct from the insulin receptor because it was not retained after immunoprecipitation of the receptor with anti-insulin receptor antibodies.  相似文献   

12.
Among various proteinase inhibitors, N-acetyl-L-tyrosine ethyl ester (ATEE), a chymotrypsin substrate analog, and N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), a trypsin inhibitor, showed significant inhibitory effects on insulin stimulated glucose transport in rat adipocytes. ATEE did not affect insulin binding, but inhibited insulin internalization. In intact adipocytes, ATEE inhibited tyrosine phosphorylation of the beta-subunit of the insulin receptor, a 170 kDa protein and a 60 kDa protein at almost the same concentration (ID50 = 0.24 +/- 0.05 mM, n = 4, mean +/- S.E.), but in a plasma membrane fraction, ATEE did not appreciably inhibit the tyrosine phosphorylation of the beta-subunit of the insulin receptor, TLCK did not inhibit insulin binding. At 0.25 mM, TLCK did not inhibit insulin internalization, but inhibited 70% of the insulin-stimulated glucose transport (ID50 = 0.19 +/- 0.02 mM, n = 7). TLCK inhibited insulin internalization at more than 0.25 mM. TLCK did not inhibit the tyrosine phosphorylation of the beta-subunit of the insulin receptor in intact cells or in the plasma membrane fraction. In intact cells, TLCK inhibited the phosphorylation of the 60 kDa protein and simultaneously it stimulated the phosphorylation of the 170 kDa protein more than 3-fold. These results indicate that there are at least two sites in the insulin-induced signal transduction pathway where proteinase inhibitors act to suppress the insulin signal transduction. A major ATEE site is very close to phosphorylation of the beta-subunit of the insulin receptor. On the other hand, TLCK inhibits a step(s) in the signal transduction pathway after the insulin receptor but before the glucose transporter.  相似文献   

13.
Western blotting with anti-phosphotyrosine antibodies was employed in order to study insulin-dependent protein tyrosine phosphorylation in intact Fao cells. In insulin-treated cells, a prominent 180-kDa protein underwent tyrosine phosphorylation, which peaked at 45 s and then rapidly declined. Pretreatment of the cells with 1 mM Bt2cAMP or 0.16 microM 12-O-tetradecanoylphorbol-13-acetate inhibited the insulin-dependent phosphorylation of pp 180, while 1 mM vanadate or 3 mM H2O2 markedly potentiated it. These results indicate that phosphorylation of pp 180 is respectively regulated by agents that are known to synergize with or antagonize the action of the insulin receptor kinase. pp 180 is therefore likely to mediate physiological functions of this receptor kinase. Incubation of Fao cells with 3 mM H2O2 for 30 min prior to their treatment with insulin for 45 s allowed the detection of additional, previously undescribed, proteins pp 150, 114, 100, 85, 68, and 56 kDa that underwent insulin-dependent tyrosine phosphorylation. The potentiating effects of H2O2 were time- and dose-dependent and could be reversed by 2 mM dithiothreitol. Proteins phosphorylated in response to H2O2 plus insulin maintained their fully phosphorylated state for at least 20 min. We suggest that these phosphoproteins are potential physiological substrates for the insulin receptor kinase.  相似文献   

14.
Expression and function of IRS-1 in insulin signal transmission.   总被引:31,自引:0,他引:31  
IRS-1 is a major insulin receptor substrate which may play an important role in insulin signal transmission. The mRNA for IRS-1 in rat cells and tissues is about 9.5 kilobases (kb). Rat liver IRS-1 was stably expressed in Chinese hamster ovary (CHO) cells (CHO/IRS-1). Although its calculated molecular mass is 131 kDa, IRS-1 from quiescent cells migrated between 165 and 170 kDa during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. IRS-1 was phosphorylated strongly on serine residues and weakly on threonine residues before insulin stimulation. Insulin immediately stimulated tyrosine phosphorylation of IRS-1, and after 10-30 min with insulin its apparent molecular mass increased to 175-180 kDa. Expression of the human insulin receptor and rat IRS-1 together in CHO/IR/IRS-1 cells increased the basal serine phosphorylation of IRS-1 and strongly increased tyrosine phosphorylation during insulin stimulation. Purified insulin receptors directly phosphorylated baculovirus-produced IRS-1 exclusively on tyrosine residues. By immunofluorescence, IRS-1 was absent from the nucleus, but otherwise distributed uniformly before and after insulin stimulation. Some IRS-1 associated with the insulin receptor during insulin stimulation. In addition, a phosphatidylinositol 3'-kinase associated with IRS-1 during insulin stimulation, and this association was more sensitive to insulin in CHO cells overexpressing the insulin receptor (CHO/IR cells), more responsive to insulin to CHO/IRS-1 cells, and both sensitive and responsive in CHO/IR/IRS-1 cells. Similarly, insulin-stimulated DNA synthesis was more sensitive to insulin in CHO/IR cells, and more responsive in CHO/IRS-1 cells; however, insulin-stimulated DNA synthesis was sensitive but poorly responsive to insulin in CHO/IR/IRS-1 cells. Together, these results suggest that IRS-1 is a direct physiologic substrate of the insulin receptor and may play an important role in insulin signal transmission.  相似文献   

15.
We studied the structure and function of the human insulin receptor (IR) and a mutant which lacked the last 43 amino acids of the beta-subunit (IR delta ct). This deletion removed tyrosine (Tyr1322, Tyr1316) and threonine (Thr1336) phosphorylation sites. In Chinese hamster ovary (CHO) cells, insulin binding to the mutant receptor was normal, and [35S]methionine labeling indicated that both the IR and IR delta ct were processed normally; however, the beta-subunit of IR delta ct was 5 kDa smaller than that of the IR. The time course of insulin-stimulated autophosphorylation of the partially purified IR delta ct was normal, but the maximum autophosphorylation was reduced 20-30%. Tryptic phosphopeptide mapping confirmed the absence of the C-terminal phosphorylation sites and indicated that phosphorylation of the regulatory region (Tyr1146, Tyr1150, Tyr1151) occurred normally; kinase activity of the IR and IR delta ct was activated normally by insulin-stimulated autophosphorylation. In the intact CHO cells, insulin-stimulated serine and threonine phosphorylation of the IR delta ct was reduced 20%, suggesting that most Ser/Thr phosphorylation sites are located outside of the C terminus. During insulin stimulation, the wild-type and mutant insulin receptor activated the phosphatidylinositol 3-kinase. Moreover, insulin itself or human-specific anti-insulin receptor antibodies stimulated glycogen and DNA synthesis equally in both CHO/IR and CHO/IR delta ct cells. These data suggest that the C terminus plays a minimal role in IR function and signal transmission in CHO cells.  相似文献   

16.
Insulin stimulates the tyrosine phosphorylation of a 185-kDa putative cytosolic substrate protein (pp185) in diverse cell types. After intravenous insulin infusion into the live intact rat, pp185 and the 95-kDa insulin receptor beta-subunit were the major proteins that tyrosine phosphorylated in liver, skeletal muscle, and adipose tissue. Both proteins were maximally phosphorylated within 30 s, and both increased in phosphotyrosine content in parallel with increasing insulin dose. However, pp185 tyrosine phosphorylation was transient, with almost complete dephosphorylation within 2-3 min despite continued insulin stimulation. To identify pp185 directly, we purified pp185 from insulin-stimulated rat liver, using a denaturation-based extraction procedure that blocks endogenous protein phosphatases and thus allows a high yield, single step isolation of phosphotyrosyl proteins by anti-phosphotyrosine antibody immunoaffinity absorption. From 50 rat livers, 50-100 pmol of pp185 was isolated. Edman degradation of seven internal tryptic peptide fragments of pp185 yielded novel amino acid sequences, indicating that pp185 is a new protein. Antipeptide antibodies were raised which specifically recognize a single, 185-kDa insulin-stimulated phosphotyrosyl protein in liver, skeletal muscle, adipose tissue, and several cultured cell lines. These results indicate that pp185 is expressed in a variety of insulin-responsive tissues, is the major protein rapidly tyrosine phosphorylated under physiological conditions in the intact animal, and also provide a route for cloning the pp185 gene and elucidating the function of pp185 in insulin signal transduction.  相似文献   

17.
Insulin receptor (IR) is a glycoprotein possessing N-linked oligosaccharide side chains on both alpha and beta subunits. The present study focuses for the first time on the potential contribution of N-linked oligosaccharides of the beta subunit in the processing, structure, and function of the insulin receptor. To investigate this point, a receptor mutant (IR beta N1234) was obtained by stable transfection into Chinese hamster ovary cells of an IR cDNA modified by site-directed mutagenesis on the four potential N-glycosylation sites (Asn-X-Ser/Thr) of the beta subunit. The mutated receptor presents an alpha subunit of 135 kDa, indistinguishable from the wild type alpha subunit, but the beta subunit has a reduced molecular mass (80 kDa instead of 95 kDa) most likely due to the absence of N-glycosylation. Metabolic labeling experiments indicate a normal processing and maturation of this mutated receptor which is normally expressed at the surface of the cells as demonstrated by indirect immunofluorescence. The affinity of the mutant for insulin (Kd = 0.12 nM) is similar to that of the wild type receptor (Kd = 0.12 nM). However, a major defect of the mutated IR tyrosine kinase was assessed both in vitro and in vivo by (i) the absence of insulin-stimulated phosphorylation of the poly(Glu-Tyr) substrate in vitro; (ii) the reduction of the insulin maximal stimulation of the mutated IR autophosphorylation in vitro (2-fold stimulation for the mutant receptor as compared to a 7-fold stimulation for the wild type); and (iii) a more complex alteration of the mutated receptor tyrosine autophosphorylation in vivo (3-fold increase of the basal phosphorylation and a 4-fold simulation of this phosphorylation as compared to the wild type receptor, the phosphorylation of which is stimulated 14-fold by insulin). The physiological consequences of this defect were tested on three classical insulin cellular actions; in Chinese hamster ovary IR beta N1234, glucose transport, glycogen synthesis, and DNA synthesis were all unable to be stimulated by insulin indicating the absence of insulin transduction through this mutated receptor. These data provide the first direct evidence for a critical role of oligosaccharide side chains of the beta subunit in the molecular events responsible for the IR enzymatic activation and signal transduction.  相似文献   

18.
The effects of species-specific monoclonal antibodies to the human insulin receptor on ribosomal protein S6 phosphorylation were studied in rodent cell lines transfected with human insulin receptors. First, Swiss mouse 3T3 fibroblasts expressing normal human insulin receptors (3T3/HIR cells) were studied. Three monoclonal antibodies, MA-5, MA-20, and MA-51, activated S6 kinase in these cells but had no effects in untransfected 3T3 cells. Both insulin and MA-5, the most potent antibody, activated S6 kinase in a similar time- and dose-dependent manner. To measure S6 phosphorylation in vivo, 3T3/HIR cells were preincubated with [32P]Pi and treated with insulin and MA-5. Both agents increased S6 phosphorylation, and their tryptic phosphopeptide maps were similar. MA-5 and the other monoclonal antibodies, unlike insulin, failed to stimulate insulin receptor tyrosine kinase activity either in vitro or in vivo. Moreover, unlike insulin, they failed to increase the tyrosine phosphorylation of the endogenous cytoplasmic protein, pp 185. Next, HTC rat hepatoma cells, expressing a human insulin receptor mutant that had three key tyrosine autophosphorylation sites in the beta-subunit changed to phenylalanines (HTC-IR-F3 cells), were studied. In this cell line but not in untransfected HTC cells, monoclonal antibodies activated S6 kinase without stimulating either insulin receptor autophosphorylation or the tyrosine phosphorylation of pp 185. These data indicate, therefore, that monoclonal antibodies can activate S6 kinase and then increase S6 phosphorylation. Moreover, they suggest that activation of receptor tyrosine kinase and subsequent tyrosine phosphorylation of cellular proteins may not be crucial for activation of S6 kinase by the insulin receptor.  相似文献   

19.
Genistein, an isoflavone putative tyrosine kinase inhibitor, was used to investigate the coupling of insulin receptor tyrosine kinase activation to four metabolic effects of insulin in the isolated rat adipocyte. Genistein inhibited insulin-stimulated glucose oxidation in a concentration-dependent manner with an ID50 of 25 micrograms/ml and complete inhibition at 100 micrograms/ml. Genistein also prevented insulin's (10(-9) M) inhibition of isoproterenol-stimulated lipolysis with an ID50 of 15 micrograms/ml and a complete effect at 50 micrograms/ml. The effect of genistein (25 micrograms/ml) was not reversed by supraphysiological (10(-7) M) insulin levels. In contrast, genistein up to 100 micrograms/ml had no effect on insulin's (10(-9) M) stimulation of either pyruvate dehydrogenase or glycogen synthase activity. We determined whether genistein influenced insulin receptor beta-subunit autophosphorylation or tyrosine kinase substrate phosphorylation either in vivo or in vitro by anti-phosphotyrosine immunoblotting. Genistein at 100 micrograms/ml did not inhibit insulin's (10(-7) M) stimulation of insulin receptor tyrosine autophosphorylation or tyrosine phosphorylation of the cellular substrates pp185 and pp60. Also, genistein did not prevent insulin-stimulated autophosphorylation of partially purified human insulin receptors from NIH 3T3/HIR 3.5 cells or the phosphorylation of histones by the activated receptor tyrosine kinase. In control experiments using either NIH 3T3 fibroblasts or partially purified membranes from these cells, genistein did inhibit platelet-derived growth factor's stimulation of its receptor autophosphorylation. These findings indicate the following: (a) Genistein can inhibit certain responses to insulin without blocking insulin's stimulation of its receptor tyrosine autophosphorylation or of the receptor kinase substrate tyrosine phosphorylation. (b) In adipocytes genistein must block the stimulation of glucose oxidation and the antilipolytic effects of insulin at site(s) downstream from the insulin receptor tyrosine kinase. (c) The inhibitory effects of genistein on hormonal signal transduction cannot necessarily be attributed to inhibition of tyrosine kinase activity, unless specifically demonstrated.  相似文献   

20.
The beta-subunit of the insulin receptor contains a tyrosine-specific protein kinase. Insulin binding activates this kinase and causes phosphorylation of the beta-subunit of the insulin receptor. It is believed that phosphorylation of other proteins might transmit the insulin signal from the receptor to the cell. In the present study we used a polyclonal anti-phosphotyrosine antibody to detect other proteins that become tyrosine phosphorylated upon insulin stimulation. Glycoproteins from human placenta membranes were enriched by wheat germ agglutinin chromatography and phosphorylation was studied with [gamma-32P]ATP and insulin in vitro. Phosphorylated proteins were immunoprecipitated by antibodies against the insulin receptor and by serum containing the anti-phosphotyrosine antibody. Beside the insulin-stimulated phosphorylation of the 95 kDa beta-subunit of the insulin receptor, an insulin-stimulated phosphorylation of a 180 kDa protein was found. The phosphorylation of both proteins occurred only on tyrosine residues. Insulin increased 32P incorporation into the 180 kDa band 2.7-fold (S.E.M. +/- 0.3, n = 5). The 180 kDa protein was not precipitated by antibodies against the insulin receptor. H.p.l.c. chromatograms of tryptic fragments of the phosphorylated 180 kDa protein and of the beta-subunit of the insulin receptor revealed different patterns for both proteins. Insulin-stimulated phosphorylation of the 180 kDa protein was also detectable in unfractionated detergent-solubilized membranes. The phosphorylation of the 180 kDa protein was stimulated by insulin with the same dose-response curve as the phosphorylation of the beta-subunit, suggesting that this protein might be another endogenous substrate of the insulin receptor kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号