首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Morphology and distribution of the proboscis sensilla in Vanessa cardui have been investigated in order to contribute to the understanding of flower-probing behaviour in butterflies. The proboscis has a bend region approximately one-third of the length from the base. A short tip region is characterized by rows of intake slits leading into the food canal. Along the dorsal, lateral and ventral sides of the proboscis, sensilla trichodea, sensilla basiconica and sensilla styloconica are distributed in varying patterns depending on their distance from the b ase. The medial food canal bears one longitudinal row of sensilla basiconica only. The bristle-shaped sensilla trichodea are longer in the proximal region of the proboscis and become gradually shorter towards the tip. They are most frequent in number near to the bend region and near the beginning of the tip region. Sensilla basiconica arranged in longitudinal rows increase in number the more distal they are on the proboscis. The tip region is characterized by rows of sensilla styloconica on the dorsal side whereas the sensilla trichodea are mostly restricted to the ventral side. The ultrastructure suggests that the aporous sensilla trichodea function as mechanosensilla while the uniporous sensilla basiconica act as contact chemosensilla. The sensilla styloconica are regarded as bimodal contact chemo/mechanosensilla since their sensory cones are equipped with a single terminal pore and a tubular body at the base. The mouthpart sensilla appear to provide tactile cues on the positioning of the proboscis and on the degree of its insertion into a floral tube. Furthermore, they receive chemical stimuli on the availability of nectar and on the immersion status of the food canal. Accepted: 12 September 1997  相似文献   

2.
The ultrastructure of a budding and appendaged bacterium resemblingPlanctomyces guttaeformis Hortobágyi (sensu Hajdu) was examined by transmission electron microscopy in negative-contrast and thin-section preparations from samples of pond and lake water in which natural blooms of this organism had occurred. Its prokaryotic nature was established, and observations were reported regarding its characteristic bulbiform or bulbose cell shape (cylindrical with one globose or swollen end), budding process, crateriform surface structures, rosettes (cell clusters) radiating from the narrow (nonglobose) ends of the adhering cells, cell envelope profile, and distinctive appendages (a single, relatively broad and long, gradually tapered, rigid, multifibrillar, polar or slightly subpolar, noncellular spike—without the adherence function of a stalk—located at the swollen pole of the bulbiform cell; numerous pili/fimbriae all over the globose portion). These traits establish the organism as a putative member of theBlastocaulis-Planctomyces group of budding and appendaged bacteria, but sufficiently distinctive (bulbiform cell shape; spike; adherent material at narrow end of cell rather than at the end of a noncellular appendage) to warrant its delineation as morphotype V of this group.  相似文献   

3.
L. Gao  B. Li 《Biological invasions》2006,8(8):1689-1692
A potential native natural enemy of invasive aquatic weed water hyacinth was found in Shanghai of China: Chironomus larva. The larva can dig into the bulbiform petiole of water hyacinth, the petiole will be broken and decomposed soon, and also, the canker of water hyacinth will fall off. So this larva will be a native natural enemy of water hyacinth for controlling its invasion. From other side, water hyacinth will be gradually naturalized to a component of native ecosystem, although it maybe needs a long time.  相似文献   

4.
Proboscis length, the length of the tip, the number and length of the various sensilla throughout the proboscis, and the size and shape of the labial palpi were compared in 25 species of pollen-feeding and non-pollen-feeding Heliconiinae (Lepidoptera, Nymphalidae). The mouthparts of pollen-feeding species (all belonging to the genera Heliconius and Laparus) do not have structures exclusive to them. However, in comparison with non-pollen-feeding Heliconiiti, the pollen-feeding species have a significantly longer proboscis without elongation of the tip-region ; the bristle-shaped sensilla trichodea were found to be significantly more numerous and longer on the proximal and mid-region of the proboscis, while the sensilla of the tip-region are significantly shorter. In addition to these proboscis features, the labial palpi were shorter in the pollen-feeding species, which is likewise possibly associated with pollen-feeding behavior. The biological role of these features is discussed and the evolution of this unique feeding behavior among Lepidoptera is considered in the context of the phylogenetic relationships among genera of Heliconiini.  相似文献   

5.
Jen? Kontschán 《ZooKeys》2014,(447):35-45
Three new species of the family Rotundabaloghiidae are discovered and described from Sabah, Malaysia. The unusual Angulobaloghia rutra sp. n. differs from the other known Angulobaloghia Hirschmann, 1979 species in the long anterior process of the female’s genital shield. Rotundabaloghia (Circobaloghia) tobiasi sp. n. has very long and apically pilose dorsal setae and two pairs of bulbiform setae, which are unique in the subgenus Rotundabaloghia (Circobaloghia) Hirschmann, 1975. The long, serrate and curved setae in the big ventral cavity of Depressorotunda (Depressorotunda) serrata sp. n. is a so far unknown character in the subgenus Depressorotunda (Depressorotunda) Kontschán, 2010.  相似文献   

6.
The structure and arrangement of sensory organs in the tardigrade Halobiotus stenostomus (Richters 1908) have been studied using transmission and scanning electron microscopy techniques. The sensory organs found on the head of H. stenostomus are as follows: the circumoral sensory field, cephalic papillae, anterolateral and posterolateral sensory fields, and suboral sensory region. Four types of ciliated receptor structures are described in the sensory fields. The lateral sensory fields contain two types of receptor endings, dense and lucent, which differ in the presence or absence of a collar and in the structure of the outer dendrite segment. Two more types of receptor endings, ultrastructurally differing from the lateral sensory field receptors, are located in the suboral sensory region. Receptors with an asymmetric collar have been found, and a receptor ending without a collar is described for the first time in tardigrades. Unlike in other species studied, the sensory organs of H. stenostomus lack the lymph cavity surrounding the outer receptor segment. Similarity and differences in the ultrastructure of receptors between H. stenostomus and other species of Eutardigrada and Heterotardigrada are discussed.  相似文献   

7.
Scolopidial sensilla in insects often form large sensory organs involved in proprioception or exteroception. Here the knowledge on Nebenorgans and accessory organs, two organs consisting of scolopidial sensory cells, is summarised. These organs are present in some insects which are model organisms for the physiology of mechanosensory systems (cockroaches and tettigoniids). Recent comparative studies documented the accessory organ in several taxa of Orthoptera (including tettigoniids, cave crickets, Jerusalem crickets) and the Nebenorgan in related insects (Mantophasmatodea). The accessory organ or Nebenorgan is usually a small organ of 8–15 sensilla located in the posterior leg tibia of all leg pairs. The physiological properties of the accessory organs and Nebenorgans are so far largely unknown. Taking together neuroanatomical and electrophysiological data from disparate taxa, there is considerable evidence that the accessory organ and Nebenorgan are vibrosensitive. They thus complement the larger vibrosensitive subgenual organ in the tibia. This review summarises the comparative studies of these sensory organs, in particular the arguments and criteria for the homology of the accessory organ and Nebenorgan among orthopteroid insects. Different scenarios of repeated evolutionary origins or losses of these sensory organs are discussed. Neuroanatomy allows to distinguish individual sensory organs for analysis of sensory physiology, and to infer scenarios of sensory evolution.  相似文献   

8.
Rediae, cercariae, and adults of Ribeiroia marini were examined using a scanning electron microscope to determine the types of tegumental sensory structures and their locations. Sensory structures were observed among numerous tegumental folds in the area immediately surrounding the mouth of the rediae. These sensory structures are similar in appearance, location and fine structure to sensory structures described from the anterior tips of rediae known to be predacious on the sporocysts of Schistosoma mansoni. These uniciliated structures may function as chemoreceptors to aid the redia in migration through snail tissue. Five types of sensory structures bearing one, two, or multiple cilia were distinguishable on the cercariae. These structures were located on and around the oral sucker, dorsal and ventral body surfaces and on the tail. They may be used by the cercariae to locate the intermediate host fish and to find suitable sites within the lateral line scales for encystment. The ventral surface of the adult fluke is covered with spines and shows an absence of sensory structures on the general body surface. Sensory structures were seen in the area surrounding the oral and ventral suckers. The extended cirrus organ has a folded tegument, but lacks spines or sensory structures.  相似文献   

9.
Amphioxus has neither elaborated brains nor definitive sensory organs, so that the two may have evolved in a mutually affecting manner and given rise to the forms seen in extant vertebrates. Clarifying the developmental and functional aspects of the amphioxus sensory system is thus pivotal for inferring the early evolution of vertebrates. Morphological studies have identified and classified amphioxus sensory cells; however, it is completely unknown whether the morphological classification makes sense in functional and evolutionary terms. Molecular markers, such as gene expression, are therefore indispensable for investigating the developmental and functional aspects of amphioxus sensory cells. This article reviews recent molecular studies on amphioxus sensory cells. Increasing evidence shows that the non-neural ectoderm of amphioxus can be subdivided into molecularly distinct subdomains by the combinatorial code of developmental cues involving the RA-dependent Hox code, suggesting that amphioxus epithelial sensory cells developed along positional information. This study focuses particularly on research involving the molecular phylogeny and expression of the seven-transmembrane, G protein-coupled receptor (GPCR) genes and discusses the usefulness of this information for characterizing the sensory cells of amphioxus.  相似文献   

10.
Tuning curves are widely used to characterize the responses of sensory neurons to external stimuli, but there is an ongoing debate as to their role in sensory processing. Commonly, it is assumed that a neuron's role is to encode the stimulus at the tuning curve peak, because high firing rates are the neuron's most distinct responses. In contrast, many theoretical and empirical studies have noted that nearby stimuli are most easily discriminated in high-slope regions of the tuning curve. Here, we demonstrate that both intuitions are correct, but that their relative importance depends on the experimental context and the level of variability in the neuronal response. Using three different information-based measures of encoding applied to experimentally measured sensory neurons, we show how the best-encoded stimulus can transition from high-slope to high-firing-rate regions of the tuning curve with increasing noise level. We further show that our results are consistent with recent experimental findings that correlate neuronal sensitivities with perception and behavior. This study illustrates the importance of the noise level in determining the encoding properties of sensory neurons and provides a unified framework for interpreting how the tuning curve and neuronal variability relate to the overall role of the neuron in sensory encoding.  相似文献   

11.
The pheromone-binding proteins (PBPs) are 16-kDa abundant proteins in specialized olfactory hairs in insects. The mechanism by which the PBPs remove the pheromone from the inner surface of sensory hairs and deliver it to the sensory cell remains unclear. Existing qualitative models postulate that pheromone is released near the dendrite by a decrease in pH or by a reduced form of the PBP. This study focuses on the two PBPs from the gypsy moth and the enantiomers of the pheromone cis-2-methyl-7,8-epoxyoctadecane. The pH dependence of pheromone binding has revealed three ionizations that are important. The type of ligand influences two of these ionizations. We propose that the (-)-enantiomer of the pheromone interacts with one of the ionizable residues on the protein while the (+)-enantiomer does not. Simultaneous variation of pH and KCl concentration in the physiological range or reduction of disulfide bridges does not change the affinity of PBP for pheromone. We propose a revised model of pheromone transport from the inner surface of the sensory hair to the sensory neuron.  相似文献   

12.
The endorgans of the inner ear of the gar were examined using transmission and scanning electron microscopy as well as nerve staining. The ultrastructure of the sensory hair cells and supporting cells of the gar ear are similar to cells in other bony fishes, whereas there are significant differences between the gar and other bony fishes in the orientations patterns of the sensory hair cells on the saccular and lagenar sensory epithelia. The saccular sensory epithelium has two regions, a main region and a secondary region ventral to the main region. The ciliary bundles on the main region are divided into two groups, one oriented dorsally and the other ventrally. Furthermore, as a result of curvature of the saccular sensory epithelium, the dorsal and ventral ciliary bundles on the rostral portion of the epithelium are rotated ninety degrees and are thus oriented on the animal's rostro-caudal axis. Hair cells on the secondary region are generally oriented ventrally. The lagenar epithelium has three groups of sensory hair cells. The groups on the rostral and caudal ends of the macula are oriented dorsally, whereas the middle group is oriented ventrally. Hair cell orientations on the utricular epithelium and macula neglecta are similar to those in other bony fishes. Nerve fiber diameters can be divided into three size classes, 1-8 microns, 9-13 microns, and 14 microns or more, with the smallest size class containing the majority of fibers. The distribution of the various classes of fiber diameters is not the same in nerve branches to each of the end organs. Similarly, the ratio of hair cells to axons differs in each end organ. The highest hair cell to axon ratio is in the utricle (23:1) and the smallest is in the macula neglecta (7:1). The number of sensory hair cells far exceed the number of eighth nerve axons in all sensory epithelia.  相似文献   

13.
The morphology of the alimentary canal, feeding technique and responses to sensory cues were investigated in Leiopotherapon unicolor . The small conical teeth on the jaws and pharynx, simple Y-shaped stomach and short gut of L. unicolor are characteristic of opportunistic carnivorous fish. Five types of behaviour, 'basal', 'orientation', 'positioning', 'attack', and 'ingestion', were recognised and are described. Capture of prey small enough to swallow whole was assisted by suction created as the mouth opened to engulf prey. Crustaceans too large to ingest whole were broken into smaller pieces against the substrate. Directional and oscillatory movement were the most effective sensory cues in eliciting feeding behaviour, implicating vision as an important sense for L. unicolor feeding in confined aquaria. Acoustic and olfactory senses are less important in prey capture. The frequency with which spangled perch responded to different sensory cues increased with increasing hunger.  相似文献   

14.
The development of the sensory epithelium of the saccular macula of Opsanus tau was studied with transmission electron microscopy. In the 10-12 somite embryo all cells of the newly formed otocyst are morphologically undefined, having an apically placed cilium with an underlying basal body and parabasal body. Junctional complexes are characterized primarily by tight junctions and a few desmosomes. In the 17-somite embryo the sensory cells begin to differentiate and are definable by the development of microvilli, which lack a cuticular plate. When the embryo has approximately 25-30 somites, ganglion cells differentiate and send their nerve processes toward the thin, disrupted basal lamina and the developing rhombencephalon. Desmosomes are more definable in the sensory regions at this age. As the myotomes begin forming (approximately 5-8 days before hatching), the nerves invade the sensory epithelium, and the developing sensory cells contain dense bodies surrounded by clear, membrane-bound vesicles. Clear synapticlike vesicles are also found throughout the infranuclear region of the sensory cells. However, afferent fibers lack a postsynaptic density. Three to 6 days prior to hatching a cuticular plate begins forming under the ciliary bundles and support and peripheral cells begin to morphologically differentiate. Two to 4 days before hatching the cuticular plate is well formed, desmosomes are numerous, afferent synapses are complete, and the sensory cells are in the upper two-thirds of the epithelium. Seven to 10 days after hatching, sensory cells have efferent synapses and ganglion cells and nerves show a myelin coat. These results suggest that sensory cells begin their development prior to VIIIth nerve innervation, although the orientation and pattern development of these cells may be related to the formation of the cuticular plate, desmosomes, afferent innervation, and basal lamina formation.  相似文献   

15.
Fruits ofDipsacaceae are single-seeded, have bristle-shaped calyx segments and are tightly enclosed by four fused bracts forming an epicalyx. Comparative morphological and anatomical studies reveal a great diversity of epicalyx and calyx, often relevant to fruit dispersal. The present contribution deals with theScabiosa group of genera, the core of theScabioseae tribe. Most of its taxa develop a diaphragma from a meristem on the inside of the epicalyx. This diaphragma, together with the lower part of the epicalyx encloses the fruit proper, whereas the upper parts form a so-called epi-diaphragma (ed) and a ± hyaline corona. Differences of the epicalyx with respect to the size and position of the ed, elaboration of the corona, origin of pits (=foveoles) and other morphological and anatomical specializations can be demonstrated. Together with palynological and karyological data these new facts support an improved concept of relationships and systematics for the taxa studied:Scabiosa sect.Scabiosa and sect.Cyrtostemma are closely related and should be united to form the genusScabiosa s. str.;Pycnocomon can be maintained as an independent genus, sister toScabiosa sect.Trochocephalus which then has to be treated as a genus,Lomelosia. In contrast, the following genera have to be included inLomelosia:Tremastelma asLomelosia sect.Callistemma, andScabiosiopsis as part ofLomelosia sect.Lomelosia. Pseudoscabiosa deviates in so many features that it has to be excluded from the redefinedScabioseae s. str.  相似文献   

16.
Summary The sensory epithelium of the lateral line organ of the common eel consists of two types of cells, (sensory and supporting). The sensory cell bears a kinocilium together with about 40 to 60 stereocilia on its surface. The kinocilium is situated either at rostral or at caudal margin of this cilial group. Such polarity of the cilial group of one cell is inverse to that of an adjacent cell.Two types of crystal-like inclusions exist in the sensory cells, consisting of granules 100 Å in diameter. Granules in one type are arranged regularly whereas those in the other rather irregularly.Two types of nerve endings exist at the base of sensory cells: one is predominant in number and contains few vesicles, accompanied by a dense spherical body surrounded by small vesicles in the sensory cell and the other is rare in number and contains many vesicles, accompanied by a small flat sac just beneath the plasma membrane of the sensory cell.The supporting cells contain numerous mitochondria, a well developed Golgi apparatus and rough-surfaced endoplasmic reticulum, and surround a sensory cell completely. Physiologic significance of some of these components is discussed.  相似文献   

17.
The sensory spots of Echinoderes capitatus from the Gulf of Trieste were examined by transmission and scanning electron microscopy. Their arrangement is bilaterally symmetrical and is species-specific. At the cuticle surface the sensory spot appears as a rounded to ovoid area of small cuticular papillae in which two pores open. The sensory organ consists of two different sensory cells, the monociliary receptor and the collar receptor, and one sheath cell. The course of the axons and their connections to the nervous system are described. A survey of collar receptors among invertebrates is given. A comparison of the sensory spots within Kinorhyncha and a comparison with the flosculi of Priapulida and the N-flosculi of Loricifera is made. A possible homology of these three structures is discussed.  相似文献   

18.
Phalangida includes three of the four suborders of Opiliones (Arachnida): Eupnoi, Dyspnoi and Laniatores. We review the literature on the sensory structures and capabilities of Phalangida, provide new morphological data for 18 species and discuss the 11 sensory structures that have been described in the group. Based on the published data encompassing both behaviour and morphology, three conclusions are apparent: (1) species of Phalangida appear to have limited abilities to detect stimuli at a distance; (2) close range olfaction probably helps to find foods with strong odours, but (3) they appear to be highly dependent on contact chemoreception to detect live prey, predators and mates. We also highlight the fact that legs I in the three suborders and pedipalps in Dyspnoi and Eupnoi are very important sensory appendages, thus legs II should not be called the ‘sensory appendages’ of harvestmen. In conclusion, we highlight the fact that the sensory capabilities, diet, prey capturing and handling ability, and foraging behaviour of species of Phalangida seem to be different from those of most other arachnids. Finally, we suggest future directions for studies in the field of the sensory system of the group.  相似文献   

19.
Auditory cortex mapmaking: principles, projections, and plasticity   总被引:3,自引:0,他引:3  
Schreiner CE  Winer JA 《Neuron》2007,56(2):356-365
Maps of sensory receptor epithelia and computed features of the sensory environment are common elements of auditory, visual, and somatic sensory representations from the periphery to the cerebral cortex. Maps enhance the understanding of normal neural organization and its modification by pathology and experience. They underlie the derivation of the computational principles that govern sensory processing and the generation of perception. Despite their intuitive explanatory power, the functions of and rules for organizing maps and their plasticity are not well understood. Some puzzles of auditory cortical map organization are that few complete receptor maps are available and that even fewer computational maps are known beyond primary cortical areas. Neuroanatomical evidence suggests equally organized connectional patterns throughout the cortical hierarchy that might underlie map stability. Here, we consider the implications of auditory cortical map organization and its plasticity and evaluate the complementary role of maps in representation and computation from an auditory perspective.  相似文献   

20.
In the mouth of the honey bee several types of sensory organs are found: Sensillae chaeticae on the tongue, sensillae trichodeae on the epipharynx and sensillae basiconicae on the hypopharynx. These organs usually are built up by a trichogen and a tormogen cell and they possess primary bipolar sensory cells in a varying number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号