首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme that catalyzed the deamination of adenosine 3′-phenylphosphonate was purified from squid liver to homogeneity as judged by SDS-PAGE. The molecular weight of the enzyme was estimated to be 60,000 by SDS-PAGE and 140,000 by Sephadex G-150 gel filtration. The enzyme deaminated adenosine, 2′-deoxyadenosine, 3′-AMP, and 2′,3′-cyclic AMP, but not adenine, 5′-AMP, 3′,5′-cyclic AMP, ADP, or ATP. The apparent Km and Vmax at pH 4.0 for these substrates were comparable (0.11-0.34mM and 179-295 μmol min?1 mg?1, respectively). The enzyme had maximum activity at pH 3.5-4.0 for adenosine 3′-phenylphosphonate, at pH 5.5 for adenosine and 2′-deoxyadenosine, and at pH 4.0 for 2′,3′-cyclic AMP and 3′-AMP when the compounds were at concentration of 0.1 mM. The Km at 4.0 and 5.5 for each substrate varied, but the Vmax were invariant. These results indicated that the squid enzyme was a novel adenosine (phosphate) deaminase with a unique substrate specificity.  相似文献   

2.
We have used the pH variation in the kinetic parameters with respect to malate of NADP-malic enzyme purified from the C4 species, Flaveria trinervia, to compare the pK values of its functional groups with those for the pigeon liver NADP-malic enzyme (MI Schimerlik, WW Cleland [1977] Biochemistry 16: 576-583) and the plant NAD-malic enzyme (KO Willeford, RT Wedding [1987] Plant Physiol 84: 1084-1087). Like the other enzymes, the C4 enzyme has a group with a pK of about 6.0 (6.6 for the C4 enzyme), as indicated from plots of the log Vmax/Km (Vmax = maximum rate of catalysis) versus pH, which must lose a proton for malate binding and subsequent catalysis. The optimum ionization for the C4 enzyme-NADP-Mg2+ complex occurs at pH 7.1 to 7.5. From pH 7.5 to 8.4, the Km increases, but Vmax remains constant. The log Vmax/Km plot in this pH range indicates a group with a pK of about 7.7. The other malic enzymes exhibit a similar pK. Above pH 8.4, deprotonation leads to a marked increase in Km and a decrease in Vmax for the C4 enzyme. As in the case of the animal enzyme, the log Vmax/Km plot for the C4 enzyme appears to approach a slope of two. The curve suggests an average pK of 8.4 for the groups involved, while the animal enzyme exhibits an average pK of 9.0. The NAD-malic enzyme does not exhibit any pK values at these high pK values. We hypothesize that the putative groups with the high pK values may be at least partially responsible for the ability of the C4 NADP-malic enzyme to maintain high activity at pH 8.0 in illuminated chloroplasts.  相似文献   

3.
The nature of chloride ion as an activator of angiotensin-converting enzyme was studied by a series of kinetic experiments with hog plasma enzyme preparation. The enzyme required the presence of chloride ion for its full catalytic activity, but its requirement of monovalent anion was not absolute. The KA value for the enzymechloride binding was estimated to be about 150 mm in all cases regardless of the peptide substrates employed. In the presence of chloride ion, the activity of the enzyme was increased, but its optimum pH was shifted gradually to the alkaline region up to pH 8.2 depending on the concentration of chloride ion. In addition, in the presence of chloride ion, the apparent Km values were reduced markedly while the Vmax values were not much altered; for example, for the hydrolysis of angiotensin I decapeptide, the Km value decreased by a factor of 50 while only an 18% increase in Vmax was observed when the enzyme was saturated with chloride ion. The result suggests that chloride ion acts as a conformational modifier inducing the affinity of synergistic binding of substrate.  相似文献   

4.
—DOPA and 5-hydroxytryptophan (5-HTP) are generally supposed to be decarboxylated in mammalian tissues by a single enzyme, the two activities being present in constant ratio through a variety of purification procedures. It has now been shown that the ratio of activity of the liver enzyme towards the two substrates can be altered by mild treatments, such as might be used in solubilization of brain preparations. DOPA decarboxylase activity was preferentially inactivated by sodium dodecyl sulphate treatment, and 5-HTP decarboxylation by urea. Previous reports that the two substrates show different pH optima but are mutually competitive, have been confirmed. The Km of the enzyme towards 5-HTP was lowest at pH 7.8 (the optimum pH for decarboxylation of this amino acid), but the variation with pH of the Km towards DOPA was unrelated to the pH optimum for decarboxylation. There appeared to be no relation between the probable ionization state of the substrates and the pH dependence of the enzyme. Studies on the binding characteristics of the enzyme for the two products, dopamine and serotonin, did not show any specific saturable binding. It is proposed that the enzyme has a complex active site, with separate affinity sites for the two substrates, adjacent to a single catalytic site.  相似文献   

5.
 The effect of aluminum ions on the binding properties of α-chymotrypsin has been studied. The results show that aluminum does not affect the catalytic rate constant k cat, but it acts as an enzyme activator favoring the binding of the substrate to the catalytic site (i.e. decreasing K m). Furthermore, aluminum binding to α-chymotrypsin displays about a threefold decrease in its affinity for the macromolecular inhibitor bovine pancreatic trypsin inhibitor (BPTI). Altogether, the different effect of aluminum on the binding of synthetic substrates (e.g. N-α-benzoyl-l-tyrosine ethyl ester, BTEE) and macromolecular inhibitors (e.g. BPTI) to α-chymotrypsin suggests the occurrence of an aluminum-linked conformational change in the enzyme molecule which brings about a marked structural change at the primary and secondary recognition sites for substrates and inhibitors. The modulative effect exerted by aluminum on the enzyme hydrolytic activity has been investigated also as a function of pH. The ion-linked effect appears to be dependent on the pH in a complex fashion, which suggests that aluminum binding is controlled by the protonation of at least two classes of residues on the enzyme molecule. Received: 5 December 1996 / Accepted: 11 March 1997  相似文献   

6.
pH Effects on the Activity and Regulation of the NAD Malic Enzyme   总被引:2,自引:2,他引:0       下载免费PDF全文
The NAD malic enzyme shows a pH optimum of 6.7 when complexed to Mg2+ and NAD+ but shifts to 7.0 when the catalytically competent enzyme-substrate (E-S) complex forms upon binding malate−2. This is characteristic of an induced conformational change. The slope of the Vmax or Vmax/Km profiles is steeper on the alkaline side of the pH optimum. The Km for malate increases markedly under alkaline conditions but is not greatly affected by pH values below the optimum. The loss of catalysis on the acidic side is due to protonation of a single residue, pK 5.9, most likely histidine. Photooxidation inactivation with methylene blue showed that a histidine is required for catalytic activity. The location of this residue at or near the active site is revealed by the protection against inactivation offered by malate. Three residues, excluding basic residues such as lysine (which have also been shown to be vital for catalytic activity, must be appropriately ionized for malate decarboxylation to proceed optimally. Two of these residues directly participate in the binding of substrates and are essential for the decarboxylation of malate. A pK of 7.6 was determined for the two residues required by the E-S complex to achieve an active state, this composite value representing both histidine and cysteine suggests that both have decisive roles in the operation of the enzyme. A major change in the enzyme takes place as protonation nears the pH optimum, this is recorded as a change in the enzyme's intrinsic affinity for malate (Km pH6.7 = 9.2 millimolar, Km pH7.7 = 28.3 millimolar). Similar changes in Km have been observed for the NAD malic enzyme as it shifts from dimer to tetramer. It is most likely that the third ionizable group (probably a cysteine) revealed by the Vmax/Km profile is needed for optimal activity and is involved in the association-dissociation behavior of the enzyme.  相似文献   

7.
Guanosine deaminase and guanine deaminase were partially purified from tea leaves. The optimum activity of guanosine deaminase was observed at pH 7.5 and that of guanine deaminase was at pH 7.0–7.5 and 8.5. Guanosine deaminase was an unstable enzyme. The activities of these deaminases were significantly inhibited by heavy metals. Molecular weights of guanosine deaminase and guanine deaminase as measured by gel filtration were about 18,000 and 54,000, respectively. The Km for the respective substrates, guanosine and guanine, were 9.5 μm and 41.7 μm. Guanosine deaminase was considered to catalyze the deamination of 2′-deoxyguanosine besides guanosine. It is suggested that guanosine deaminase as well as guanine deaminase in tea leaves not only acts on the catabolic pathway, but also is involved in the biosynthesis of caffeine from guanosine or guanine nucleotides.  相似文献   

8.
Summary An extracellular xylanase was purified to homogeneity from the culture filtrate of a thermophilic Bacillus sp. The molecular weight of the purified xylanase was 44 kDa, as analysed by SDS/PAGE. The enzyme reaction followed Michaelis–Menten kinetics with Kmapp and Vmax values of 0.025 mg/ml and 450 U/mg protein, respectively, as obtained from a Lineweaver–Burk plot. The xylanase contained no other enzyme activity except for the hydrolysis of xylan substrate. The optimal temperature of the enzyme assay was 50 °C. The optimum pH for the xylanase activity was at three peaks 6.5, 8.5 and 10.5, respectively and the enzyme was stable over a broad range of pH from pH 6 to 10.5. Metal ions tested with demetalized enzyme had no effect, with the exception of Hg2+ and Pb2+ (both strong inhibitors). Inhibition of the enzyme activity by N-bromosuccinimide (amino acid modifier) indicated the role of tryptophan residues in the catalytic function of the enzyme. Due to these outstanding properties, the xylanase of Bacillussp. finds potential applications in biopulping, biobleaching and de-inking of recycled paper and other industrial processes.  相似文献   

9.
The catalytic subunit of cAMP-dependent protein kinase from rat adipose tissue was purified to apparent homogeneity by making use of the differential binding of the holoenzyme and the free catalytic subunit to CM-Sephadex and by gel chromatography. Stability and yield was improved by inclusion of nonionic detergent in all steps after dissociation of the holoenzyme. Isoelectric focusing separated enzyme species with pI values of 7.8 and 8.6–8.8. The amino acid composition was similar to the enzyme purified from other tissues. Enzyme activity was markedly unstable in dilute solutions (<5 μg/ml). Additions of nonionic detergent, glycerol, bovine serum albumin and, especially, histones stabilized the enzyme. With protamine, the catalytic subunit had an apparent Km of 60 μM and Vmax of 20 μmol·min−1·mg−1, corresponding values with mixed histones were 12 μM and 1.2 μmol·min−1·mg−1. With both protein substrates the apparent Km for ATP was 11 μM. Concentrations of Mg2+ above 10 mM were inhibitory. Histone phosphorylation was inhibited by NaCl (50% at 0.5 M NaCl) while protamine phosphorylation was stimulated (4-fold at 1 M NaCl). Inorganic phosphate inhibited both substrates (histones: 50% at 0.3 M, and protamine: 50% at 0.5 M). pH optimum was around pH 9 with both substrates. The catalytic subunit contained 2.0 (range of three determinations, 1.7–2.3) mol phosphate/mol protein. It was autophosphorylated and incorporated 32Pi from [γ-32P]ATP in a time-dependent process, reaching saturation when approx. 0.1 mol phosphate/mol catalytic subunit was incorporated.  相似文献   

10.
A dye-decolorizing bacterium was isolated from a coconut coir sample and identified as a new genus Kerstersia sp. by various biochemical tests and 16S rRNA gene sequencing. This bacterium was capable of degrading sulfonated azo dye Amaranth aerobically at 40?°C and pH 7.0. Tests conducted on intracellular crude enzyme extract identified an oxygen insensitive azoreductase. The optimum dye-decolorizing activity at pH 7.0 and 40?°C for the decolorization of dye was 0.091?U mL?1 (μmax 0.522?mg h?1). The Ks 104.51?μM?1 has been evaluated by plotting Lineweaver–Burk plot for the Amaranth dye. The dye degraded products were extracted and characterized by TLC, diazotization and Carbylamines test, which indicated that Amaranth was biotransformed into non-toxic aromatic metabolite without amine group.  相似文献   

11.
Saccharopine dehydrogenase catalyzes the NAD-dependent conversion of saccharopine to generate l-lysine and α-ketoglutarate. A disulfide bond between cysteine 205 and cysteine 249, in the vicinity of the dinucleotide-binding site, is observed in structures of the apoenzyme, while a dithiol is observed in a structure with AMP bound, suggesting preferential binding of the dinucleotide to reduced enzyme. Mutation of C205 to S gave increased values of V/Et and V/KEt at pH 7 compared to wild type. Primary deuterium and solvent deuterium kinetic isotope effects suggest the catalytic pathway, which includes the hydride transfer and hydrolysis steps, contributes more to rate limitation in C205S, but the rates of the two steps relative to one another remain the same. There is a large increase in the rate constants V1/Et and V1/KNADEt at pH values below 7 compared to WT. Data indicate the low pH increase in activity results from a decreased sensitivity of the C205S mutant enzyme to the protonation state of an enzyme group with a pKa of about 7, likely responsible for a pH-dependent conformational change. Reduction of WT and C205S mutant enzymes with TCEP gives equal activities at pH 6, consistent with the increased activity observed for the C205S mutant enzyme.  相似文献   

12.
Glucosamine-6-phosphate (GlcN6P) deaminase seems to be the main enzyme in Aspergillus niger cells responsible for rapid glucosamine accumulation during the early stages of growth in a high-citric-acid-yielding medium. By determining basic kinetic parameters on the isolated enzyme, a high affinity toward fructose-6-phosphate (Fru6P) was measured, while in the reverse direction the K m value for glucosamine-6-phosphate was lower than deaminases from other organisms measured so far. The enzyme characteristics of GlcN6P deaminase suggest it must compete with 6-phosphofructo-1-kinase (PFK1) for the common substrate—Fru6P in A. niger cells. Glucosamine accumulation seems therefore to remove an intermediate from the glycolytic flux, a situation which is reflected in slower citric acid accumulation and a specific growth rate after the germination of spores. When ammonium ions are depleted from the medium, one of the substrates for GlcN6P deaminase becomes limiting and Fru6P can be catabolised by PFK1 which enhances glycolytic flux. Other enzymatic features of GlcN6P deaminase such as pH optima for both aminating and deaminating reactions might play a significant role in rapid glucosamine accumulation during the early phase of fermentation and a slow consumption of aminosugar during the citric-acid-producing phase.  相似文献   

13.
Phospholipase A2 was isolated from Trypanosoma congolense and purified to electrophoretic homogeneity. The enzyme appeared to exist in a dimeric form with subunit molecular weights of 16 500 and 18 000. It had a pH optimum of 6·8. Kinetic analysis with different substrates, showed that the enzyme had exceptional specificity for 1,2,dimyristoyl-sn-phosphatidylcholine and 1,2,dioleoyl-sn-phosphatidylcholine with Km values of 1·85 × 10?3 M and 2·12 × 10?3 M respectively. The Arrhenius plot was linear with an activation energy of 5·8 kcal mol?1. Inhibition studies with parahydroxymercuribenzoate and tri-butyltinoxide were positive thus implicating a thiol group at the catalytic site of the enzyme. The enzyme was stable to heat treatment and possessed haemolytic and anticoagulating properties.  相似文献   

14.
An NAD-dependent D-2-hydroxyacid dehydrogenase (EC 1.1.1.) was isolated and characterized from the halophilic Archaeon Haloferax mediterranei. The enzyme is a dimer with a molecular mass of 101.4 ± 3.3 kDa. It is strictly NAD-dependent and exhibits its highest activity in 4 M NaCl. The enzyme is characterized by a broad substrate specificity 2-ketoisocaproate and 2-ketobutyrate being the substrates with the higher Vmax/Km. When pyruvate and 2-ketobutyrate were the substrates the optimal pH was acidic (pH 5) meanwhile for 2-ketoisocaproate maximum activity was achieved at basic pH between 7.5 and 8.5. The optimum temperature was 52 ºC and at 65 ºC there was a pronounced activity decrease. This new enzyme can be used for the production of D-2-hydroxycarboxylic acid.  相似文献   

15.
Arylalkylamine N-acetyltransferase (AANAT), constituting a large family of enzymes, catalyzes the transacetylation from acetyl-CoA to monoamine substrates, although homology among species is not very high. AANAT in vertebrates is photosensitive and mediates circadian regulation. Here, we analyzed AANAT of the cricket, Dianemobius nigrofasciatus. The central nervous system contained AANAT activity. The optimum pHs were 6.0 (a minor peak) and 10.5 (a major peak) with crude enzyme solution. We analyzed the kinetics at pH 10.5 using the sample containing collective AANAT activities, which we term AANAT. Lineweaver-Burk plot and secondary plot yielded a Km for tryptamine as substrate of 0.42 µM, and a Vmax of 9.39 nmol/mg protein/min. The apparent Km for acetyl-CoA was 59.9 µM and the Vmax was 8.14 nmol/mg protein/min. AANAT of D. nigrofasciatus was light-sensitive. The activity was higher at night-time than at day-time as in vertebrates. To investigate most effective wavelengths on AANAT activity, a series of monochromatic lights was applied (350, 400, 450, 500, 550, 600 and 650 nm). AANAT showed the highest sensitivity to around 450 nm and 550 nm. 450 nm light was more effective than 550 nm light. Therefore, the most effective light affecting AANAT activity is blue light, which corresponds to the absorption spectrum of blue wave (BW)-opsin.  相似文献   

16.
Cathepsin B was purified from the crude extract of carp hepatopancreas by a modified method, and the specific activity increased about 3,400-fold with a 17% recovery. The purified enzyme gave a single protein band on Native-PAGE, whereas two bands with molecular weights of 30,000 (single chain) and 26,000 (heavy chain) migrated on SDS-PAGE. The enzyme potently hydrolyzed Z-Arg-Arg-MCA and Z-Phe-Arg-MCA but lacked the ability to hydrolyze most of the other MCA substrates. The kinetic constants of the enzyme with two Z-blocked substrates revealed that Vmax and Kcat values of Z-Phe-Arg-MCA were much higher than Z-Arg-Arg-MCA, while their Km values were approximate. The optimum hydrolysis pH and temperature of the enzyme for these two substrates were determined to be pH 6.0 and 45°C, respectively. A variety of protease inhibitors such as E-64, DTNB, antipain, leupeptin, chymostatin, TLCK and TPCK and metal compounds such as CuCl2, CdCl2, HgCl2, and Zn(CH3COO)2 were able to significantly inactivate the enzyme. In contrast, cysteine and 2-mercaptoethanol activated the enzyme, with cysteine being more effective for activation than 2-mercaptoethanol over the tested concentrations.  相似文献   

17.
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.  相似文献   

18.
Temperature dependences of kinetic constants (k cat and K m) were studied for enzymatic hydrolysis of N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-arginine-p-nitroanilide and N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-lysine-p-nitroanilide by bovine cationic and rat anionic (wild-type and mutant) trypsins. The findings were compared with the corresponding literature data for hydrolysis of N-benzoyl-DL-arginine-p-nitroanilide by bovine cationic trypsin and natural trypsins of coldadapted fishes. The anionic and cationic trypsins were found to differ in organization of the S1 -substrate-binding pocket. The difference in the binding of lysine and arginine residues to this site (S1) was also displayed by opposite temperature dependences of hydrolysis constants for the corresponding substrates by the anionic and cationic trypsins. The data suggest that the effect of any factor on the binding of substrates (the K m value) to the anionic and cationic trypsins and on the catalytic activity k cat should be compared only with the corresponding data for the natural enzyme of the same type. Mutants of rat anionic trypsin at residues K188 or Y228 were prepared by site-directed mutagenesis as approximate models of natural psychrophilic trypsins. Substitution of the charged lysine residue in position 188 by hydrophobic phenylalanine residue shifted the pH optimum of the resulting mutant trypsin K188F from 8.0 to 9.0-10.0, similarly to the case of some natural psychrophilic trypsins, and also 1.5-fold increased its catalytic activity at low temperatures as compared to the wild-type enzyme.  相似文献   

19.
Combined molecular docking, molecular dynamics (MD) and density functional theory (DFT) studies have been employed to study catalysis of the Diels-Alder reaction by a modified lipase. Six variants of the versatile enzyme Candida Antarctica lipase B (CALB) have been rationally engineered in silico based on the specific characteristics of the pericyclic addition. A kinetic analysis reveals that hydrogen bond stabilization of the transition state and substrate binding are key components of the catalytic process. In the case of substrate binding, which has the greater potential for optimization, both binding strength and positioning of the substrates are important for catalytic efficiency. The binding strength is determined by hydrophobic interactions and can be tuned by careful selection of solvent and substrates. The MD simulations show that substrate positioning is sensitive to cavity shape and size, and can be controlled by a few rational mutations. The well-documented S105A mutation is essential to enable sufficient space in the vicinity of the oxyanion hole. Moreover, bulky residues on the edge of the active site hinders the formation of a sandwich-like nearattack conformer (NAC), and the I189A mutation is needed to obtain enough space above the face of the α,β-double bond on the dienophile. The double mutant S105A/I189A performs quite well for two of three dienophiles. Based on binding constants and NAC energies obtained from MD simulations combined with activation energies from DFT computations, relative catalytic rates (v cat /v uncat ) of up to 103 are predicted.  相似文献   

20.
Abstract Acetylcholinesterase (AChE) in the susceptible (S) and the resistant (R) strains of housefly (Musca domestica) was investigated using kinetic analysis. The Vmax values of AChE for hydrolyzing acetylthiocholine (ATCh) and butyrylthiocholine (BTCh) were 4578.50 and 1716.08nmol/min/mg* protein in the R strain, and were 1884.75 and 864.72 nmol/min/mg. protein in the Sstrain, respectively. The Vmax ratios of R to S enzyme were 2.43 for ATCh and 1.98 for BTCh. The Km values of AChE for ATCh and BTCh were 0.069 and 0.034 mmol/L in the S strain, and 0.156, 0.059 mmol/L in the R strain, respectively. The Km ratios of R to S enzyme were 2.26 for ATCh and 1.74 for BTCh. The ki ratios of S to R enzyme for three insecticides propoxur, methomyl and paraoxon were 46.04, 4.17 and 2. 86, respectively. In addition, kcat and kcat/Km for measuring turnover and catalytic efficiency of AChE were determined using eserine as titrant. The kcat values of AChE from the R strain for both ATCh and BTCh were higher than those values from the S strain. But the values of kcat/Km were in contrary to the kcat values with R enzyme compared to S enzyme. The AChE catalytic properties and sensitivity to the inhibition by three insecticides in the R and S strains of housefly were discussed based on contribution of Vmax, Km, ki, kcat and kcat/Km. All these data implied that AChE from the R strain might be qualitatively altered. We also observed an intriguing phenomenon that inhibitors could enhance the activity of AChE from the resistant strain. This “flight reaction” of the powerful enzyme might be correlated with the developing resistance of housefly to organophosphate or carbamate insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号