首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recent report (Radi et al., J. Biol. Chem. 266:22028–22034, 1991) showed that rat heart mitochondria contain catalase. The protective role of mitochondrial catalase was tested by exposing heart or kidney mitochondria and mitoplasts to two oxidants (H2O2) or tert-butyl hydroperoxide, t-BOOH), estimating lipid peroxidation (as thiobarbituric acid-reactive substances, TBARS) and overall oxidative stress (as chemiluminescence). Additional controls included heart and kidney preparations from aminotriazole-treated (catalase-depleted) rats. Both oxidants increased TBARS in catalase-free preparations to similar extents over their respective controls (between 200 to 350%). In catalase-containing preparations, H2O2 lipid peroxidation increased by only 40 to 96% over controls. Similar qualitative results were obtained when measuring chemiluminescence. The catalytic role of cytochrome c in mitochondrial lipid peroxidation was investigated by exposing either control or cytochrome-c-depleted kidney mitoplasts (catalase free) to either H2O2 or t-BOOH. Hydrogen-peroxide-dependent mitochondrial lipid peroxidation varied with cytochrome c concentrations, remaining close to controls when cytochrome c concentration decreased by 66%, even though there was no catalase present. Tert-butyl hydroperoxide-dependent lipid peroxidation was less affected by cytochrome c remaining 2.3-fold above controls under the same conditions, suggesting that organic peroxides are more likely to remain in the less polar membrane environment being decomposed by heme or nonheme iron imbedded in the inner mitochondrial membrane. Chemiluminescence was less affected by cytochrome c depletion. Comparing control and cytochrome-c-deficient mitochondria, chemiluminescence was 1.7-fold and 2.8-fold higher when control preparations were challenged with t-BOOH or H2O2, respectively.  相似文献   

2.
In various water-immiscible organic solvents, hemoglobin, myoglobin and cytochrome c deposited on Celite catalyzed the oxidation of dibenzothiophene when peroxides having nonpolar substituents, such as t-butyl hydroperoxide and cumene hydroperoxide (, -dimethylbenzyl hydroperoxide), were used as oxidants. In hexadecane, oxidation of dibenzothiophene by immobilized cytochrome c, with a K m value of 0.15 mM for dibenzothiophene, was inhibited by cumene hydroperoxide above 0.5 mM.  相似文献   

3.
A system was designed for chemiluminescent measurement of lipid hydroperoxides by their site-specific reaction in sodium dodecylsulfate micelles. Ferrous ion-induced decomposition of lipid hydroperoxides in the sodium dodecylsulfate micelles resulted in strong chemiluminescence of the Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-alpha]pyrazin-3-one (CLA). After addition of ferrous sulfate to the micelles containing lipid hydroperoxide and luciferin, the chemiluminescence intensity reached a maximum rapidly and then decreased. The sequence of this reaction was elucidated by theoretical analysis, which demonstrated that the maximum chemiluminescence intensity is proportional to the initial concentration of hydroperoxide. Good linear relationships were observed between the maximum counts of chemiluminescence and the amounts of hydroperoxides of linoleic acid, phosphatidylcholine, choresterol (5 alpha), cumene and tert-butyl and hydrogen peroxide. This chemiluminescence method was simple and sensitive enough to detect picomole levels of linoleic acid and phosphatidylcholine hydroperoxides.  相似文献   

4.
A combined system of chemiluminescence detection and high performance liquid chromatography (CL–HPLC) was developed to determine primary peroxidation products in biological tissues, such as phosphatidylcholine hydroperoxide (PCOOH). The CL–HPLC assay consists of separation of lipid classes with HPLC and detection of hydroperoxide-specific chemiluminescence. Hydroperoxides react with heme compounds to produce oxidants as suggested by our early studies on tissue low-level chemiluminescence in which singlet molecular oxygen is generated as one of the excited species in several biological systems involving free radical events. In the CL–HPLC method, a cytochrome c–luminol mixture was used as a hydroperoxide-specific luminescent reagent, and the quantification of hydroperoxide was performed by detecting chemiluminescence due to the luminol oxidation caused by the oxidant produced during the lipid hydroperoxides with heme. The detection limit of PCOOH was 10 pmole hydroperoxide–O2. PCOOH in normal human blood was found to be 10–500 pmol/ml plasma and significantly higher levels of PCOOH were observed in some hospitalized patients.  相似文献   

5.
Hematin- and peroxide-catalyzed peroxidation of phospholipid liposomes   总被引:3,自引:0,他引:3  
The effect of hydroperoxides on hematin-catalyzed initiation and propagation of lipid peroxidation was examined utilizing soybean phosphatidylcholine liposomes as model membranes. Polarographic and spectrophotometric methods revealed a bimodal pseudocatalytic activity for hematin. A slow initiation phase of peroxidation was observed in the presence of low peroxide concentrations, whereas a fast propagative phase was observed at higher peroxide levels. Peroxide levels were manipulated enzymatically by the combination of phospholipase A2 and lipoxidase or by the direct addition of linoleic acid hydroperoxide, cumene hydroperoxide, or hydrogen peroxide. In addition, the effect of two different techniques for liposome preparation, i.e., sonication and extrusion, were compared on the basis of peroxidation kinetics. High pressure liquid chromatography analysis showed that sonicated liposomes contained higher levels of endogenous peroxides than the extruded ones. These sonicated liposomes also exhibited more rapid peroxidation following hematin addition. Extruded liposomes were more resistant to hematin-catalyzed peroxidation but became better substrates when exogenous hydroperoxides were added. All three peroxides reacted with hematin during which decomposition of peroxide and irreversible oxidation of hematin took place. Spectral analysis of hematin indicated that a higher oxidation state of hematin iron may be transiently formed during reaction with hydroperoxides and accounts for the propagation of lipid peroxidation when reactions proceed in the presence of soybean phosphatidylcholine liposomes. Of the three peroxides studied, linoleic acid hydroperoxide was most efficient in supporting hematin-catalyzed lipid peroxidation. The relevance of our findings is discussed in terms of the concentration dependence for lipid peroxides in determining the rate and extent of radical propagation chain reactions catalyzed by heme-iron catalysts such as hematin. Variation of hematin and linoleic hydroperoxide concentrations may provide an efficient and reproducible method for inducing and manipulating the rates and extent of lipid peroxidation through facilitation of the propagative phase of lipid peroxidation. In addition, we address a problem inherent to in vitro studies of heme-catalyzed lipid peroxidation where preparations of peroxide-free membranes should be of concern.  相似文献   

6.
Ferricytochrome c showed low-level chemiluminescence, with a light-emission measured of about 1×103–3×103 counts/s, when supplemented with organic hydroperoxides. Tertiary hydroperoxides (cumene hydroperoxide and t-butyl hydroperoxide) showed a saturation behaviour at about 5mm-hydroperoxide, whereas primary hydroperoxides showed a quadratic dependence on the hydroperoxide concentration. Chemiluminescence depended linearly on cytochrome c concentration, and optimal light-emission was observed at [t-butyl hydroperoxide]/[ferricytochrome c] ratios of 160–500. Hydroperoxide-supplemented ferricytochrome c consumed O2 at a rate of 1.0μmol/min per μmol of cytochrome c; the rate of O2 uptake was linearly related to the concentration of cytochrome c. The Soret absorption band of ferricytochrome c decreased about 64% after incubation with t-butyl hydroperoxide, whereas the 530nm band was almost totally abolished. Light-emission was (a) inhibited competitively by cyanide. (b) inhibited by singlet-oxygen quenchers (e.g. β-carotene), scavengers (e.g. dimethylfuran) and traps (e.g. histidine and tryptophan) and (c) increased by singlet-oxygen-chemiluminescence enhancer 1,4-diazabicyclo[2.2.2]-octane. Superoxide dismutase had no effect on the present system. The participation of free radicals is suggested by the effect of the radical trap 2,5-di-t-butylquinol. Singlet-oxygen dimol emission seems to be mainly responsible for the observed light-emission; a mechanism that can account for the major part of the present experimental observations is proposed.  相似文献   

7.
To reveal clues to the function of human plasma glutathione peroxidase (GPx), we investigated its catalytic effectiveness with a variety of hydroperoxides. Comparisons of hydroperoxides as substrates for plasma GPx based on the ratio ofV max /K m were blocked by the limited solubility of the organic hydroperoxides, which prevented kinetic saturation of the enzyme at the chosen glutathione concentration. Therefore, we compared the hydroperoxides by the fold increase in the apparent first-order rate constants of their reactions with glutathione owing to catalysis by plasma GPx. The reductions of aromatic and small hydrophobic hydroperoxides (cumene hydroperoxide,t-amyl hydroperoxide,t-butyl hydroperoxide, paramenthane hydroperoxide) were better catalyzed by plasma GPx than were reductions of the more “physiological” substrates (linoleic acid hydroperoxide, hydrogen peroxide, peroxidized plasma lipids, and oxidized cholesterol).  相似文献   

8.
Luminol-enhanced chemiluminescence (LEC) is very sensitive in detecting free radicals but relatively insensitive for hydroperoxides (hydrogen peroxide, tert-butyl hydroperoxide). However, in the presence of opsonized zymosan (often used for stimulation of phagocytic cells) hydroperoxides also induce LEC, suggesting that free radicals are produced under these conditions. Therefore careful interpretation with respect to the nature of the reactive species is necessary when LEC is used for characterization of zymosan-induced phagocytosis. We studied the properties of zymosan-induced LEC under different test conditions and with various inhibitors. Typical radical scavengers, e.g. nordihydroguaiaretic acid and superoxide dismutase, are strong inhibitors, indicating the importance of the superoxide anion. This system is useful for drug testing with respect to antioxidative or radical scavenging activity.  相似文献   

9.
Lipid hydroperoxides in oils and foods were measured by a flow injection analysis system with high sensitivity and selectivity. After sample injection, lipid hydroperoxides were reacted with diphenyl-1-pyrenylphosphine (DPPP) in a stainless steel coil, then the fluorescence intensity of DPPP oxide, that was produced by the reaction, was monitored. By this method, trilinolein hydroperoxide showed good linearity between 0.4 and 79pmol and their detection limits were 0.2pmol (signal-to-noise ratio = 3). The method made it possible to inject samples at 2-min intervals. There was a good agreement of the amounts of lipid hydroperoxides in oils and foods between by the batch method with DPPP and by the proposed method (coefficient of correlation: r = 0.999; n = 21; peroxide value = 0.09–167 meq/g). With this method, the calibration graph of trilinolein hydroperoxide was useful for all samples tested.  相似文献   

10.
The addition of luminol plus a catalyst such as peroxidase or a heme prosthetic group to a solution containing a small quantity of lipid hydroperoxides results in a flash of chemiluminescence, the intensity of which is a function of the hydroperoxide concentrations. Various protocols for lipid hydroperoxide assays have been described and we have studied conditions to increase their sensitivity and specificity. Plasma lipid hydroperoxide determinations require an extraction, since compounds present in plasma interfere with light emission. Moreover, the sensitivity of the assay is by the presence of hydrogen peroxide in the medium, which causes high background values. Catalase does not act on lipid hydroperoxides and can be used to eliminate hydrogen peroxide from the reaction medium. The determination requires a blank tube in which hydroperoxides are destroyed by incubating the sample with haematin plus ascorbate. The increase in the chemiluminescence of the assay tube caused by the presence of lipid hydroperoxides is then compared to the value obtained for an internal standard.  相似文献   

11.
Abstract

Dietary oxysterols can reach the circulation and this may contribute to atherosclerosis, where lipid oxidation is thought to be important. There is also evidence that, in rats,peroxidized lipids are absorbed and transported into lymph [Aw TY, Williams MW, Gray L. Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo: role of mucosal GSH. Am J Physiol 1992; 262: G99–G106], although the method used to detect lipid peroxides lacked specificity. We tested whether intragastric administration of vegetable oils containing triglyceride hydroperoxides (TG-OOH) to rats resulted in detectable lipid hydroperoxides in mesenteric lymph. Using sensitive HPLC with postcolumn chemiluminescence detection, we were unable to detect hydroperoxides of triglycerides, cholesterylesters or phospholipids during the course of lipid absorption, and lymph levels of ascorbate, urate, α-tocopherol and ubiquinol-9 did not change significantly. By contrast, we observed a striking reducing activity judged by the efficient reduction of administered ubiquinones-9 and -10 to the corresponding ubiquinols. Exposure of rat lymph and isolated chylomicrons to aqueous peroxyl radicals revealed patterns of antioxidant consumption and lipid hydroperoxide formation similar to those described previously for human extravascular fluids and isolated lipoproteins, respectively. In particular, rates of TG-OOH formation in lymph and chylomicrons were very low to undetectable as long as ascorbate and/or ubiquinols were present, but subsequently proceeded in a chain reaction despite the presence of α-tocopherol. These studies demonstrate that rat intestine and mesenteric lymph possess efficient antioxidant defenses against preformed lipid hydroperoxides and (peroxyl) radical mediated lipid oxidation. We conclude that dietary lipid hydroperoxides or postprandial oxidation of lipids are not likely to contribute to these particular forms of oxidized lipids in circulation and aortic tissue.  相似文献   

12.
Light emission (chemiluminescence; CL) was observed in the reaction of anthocyanins with tert-butyl hydroperoxide (t-BuOOH) in the presence of acetaldehyde. The intensity of the CL of the anthocyanins was in the order of nasunin > rubrobrassicin > delphinidin > malvin = cyanidin > malvidin, indicating that glucosylation at C-3 and C-5 of the anthocyanin skeleton enhances the CL of the parent compound. CL intensity was enhanced at alkaline pH. The results suggest that the antioxidant effect of anthocyanins on lipid peroxidation, which is observed in the linoleic acid-β-carotene-lipoxcygenase system, is at least partly due to their strong reactivity with hydroperoxides.  相似文献   

13.
Submitochondrial particles from bovine heart mitochondria showed low-level chemiluminescence when supplemented with organic hydroperoxides. Chemiluminescence seems to measure integratively radical reactions involved in lipid peroxidation and related processes. Maximal light-emission was about 1500 counts/s and was reached 2-10min after addition of hydroperoxides. Ethyl hydroperoxide, cumene hydroperoxide and t-butyl hydroperoxide were effective in that order. Antimycin and rotenone increased chemiluminescence by 50-60%; addition of substrates, NADH and succinate did not produce marked changes in the observed chemiluminescence. Cyanide inhibited chemiluminescence; half-maximal inhibitory effect was obtained with 0.03mm-cyanide and the inhibition was competitive with respect to t-butyl hydroperoxide. Externally added cytochrome c (10-20mum) had a marked stimulatory effect on chemiluminescence, namely a 12-fold increase in light-emission of antimycin-inhibited submitochondrial particles. Stimulation of hydroperoxide-induced chemiluminescence of submitochondrial particles by cytochrome c was matched by a burst of O(2) consumption. O(2) is believed to participate in the chain radical reactions that lead to lipid peroxidation. Superoxide anion seems to be involved in the chemiluminescence reactions as long as light-emission was 50-60% inhibitible by superoxide dismutase. Singlet-oxygen quenchers, e.g. beta-carotene and 1,4-diazabicyclo[2,2,2]-octane, affected light-emission. beta-Carotene was effective either when incorporated into the membranes or added to the cuvette. The present paper suggests that singlet molecular oxygen is mainly responsible for the light-emission in the hydroperoxide-supplemented submitochondrial particles.  相似文献   

14.
A simple and sensitive method for the direct measurement of lipid peroxides in lipoprotein and liposomes is described. The method is based on the principle of the rapid peroxide-mediated oxidation of Fe2+ to Fe3+ under acidic conditions. The latter, in the presence of xylenol orange, forms a Fe(3+)-xylenol orange complex which can be measured spectrophotometrically at 560 nm. Calibration with standard peroxides, such as hydrogen peroxide, linoleic hydroperoxide, t-butyl hydroperoxide, and cumene hydroperoxide gives a mean apparent extinction coefficient of 4.52 x 10(4) M-1 cm-1 consistent with a chain length of approximately 3 for ferrous ion oxidation by hydroperoxides. Endoperoxides are less reactive or unreactive in the assay. The assay has been validated in the study of lipid peroxidation of low density lipoprotein and phosphatidyl choline liposomes. By pretreatment with enzymes known to metabolize peroxides, we have shown that the assay measures lipid hydroperoxides specifically. Other methods for measuring peroxidation, such as the assessment of conjugated diene, thiobarbituric acid reactive substances and an iodometric assay have been compared with the ferrous oxidation-xylenol orange assay.  相似文献   

15.
A new method for the detection of various lipid hydroperoxides and hydrogen peroxide at the picomole level has been developed by combining an HPLC system with an ultrasensitive analytical system based on the detection of chemiluminescence emitted by isoluminol in the presence of hydroperoxide and microperoxidase. This HPLC separation removes interfering antioxidants so that the method can be applied to biological samples such as blood plasma lipids. Several HPLC conditions are described which allow simple identification of different lipid hydroperoxides.  相似文献   

16.
The method, developed by modifying the FOX methods described by Wolff (Methods Enzymol. 233, 182-189, 1994), involves the oxidation of Fe2+ by peroxides at low pH in the presence of both the ferric-complexing dye xylenol orange and sucrose, the amplifier of the reaction. The method proved to be a convenient, simple and efficient assay for the direct measurement of both water and lipid soluble peroxides. In fact it improves by about 60% the sensitivity of the FOX1 method for water soluble peroxides, and by 7-8 times that of the FOX2 method for lipid soluble peroxides. It allows the detection of 0.1 μM peroxide in the test solution. The method is suitable to measure the lipid hydroperoxides present in phosphatidylcholine liposomes and in human LDL. The data obtained allowed us to define a mathematical expression to calculate the lipid hydroperoxide content of liposomes knowing their oxidation index.  相似文献   

17.
[1,2-3H]Cholesterol was epoxidized to radioactive cholesterol α- and β-epoxides (5,6α-epoxy-5α- and 5,6β-epoxy-5β-cholestan-3β-ols) in the ratio 1:4 by hepatic microsomal lipid hydroperoxides (MsOOH, 1 mM as active oxygen) in the presence of ferrous ion. MsOOH could be replaced by methyl linoleate hydroperoxides (MOOH) under the same conditions although the latter was less effective than the former. None of cumene hydroperoxide, t-butyl hydroperoxide, and hydrogen peroxide was an effective oxidant even at 10 mM. Neither ADP nor EDTA had an effect on the epoxidation of cholesterol by MsOOH as well as by MOOH. Ferrous ion could not be replaced by ferric ion in the hydroperoxide-mediated epoxidation. Cyanide anion potentially inhibited the reaction.  相似文献   

18.
Summary Inasmuch as it is known that the toxicity of anesthetic agents is potentiated by hypoxia and that the reductive metabolism of these agents results in the formation of lipid hydroperoxides, we investigated the toxicity of hydroperoxides under low-oxygen concentrations. We found that hypoxia exacerbates the toxicity oft-butyl hydroperoxide, shifting the dose-response curve oft-butyl hydroperoxide vs. lysis of hepatocytes approximately an order of magnitude to the left. Furthermore, although at the end of a 4-h exposure to 0.5% O2 hepatocyte monolayers seemed normal by three indices (release of51Cr and serum glutamate transaminase or exclusion of trypan blue), they were completely lysed after an additional 20 h reoxygenation at 20%. O2. In contrast, monolayers exposed to 2% O2 for 4 h seemed normal after 20 h reoxygenation. However, cells exposed to both a subtoxic dose of hydroperoxide and 4 h of 2% O2, although seeming healthy at the end of the hypoxic period, were completely lysed within 20 h after reoxygenation. The study was supported by grant OH 00978 from the National Institutes for Occupational Safety and Health, Atlanta, Georgia.  相似文献   

19.
The susceptibility of photodynamically-generated lipid hydroperoxides to reductive inactivation by glutathione peroxidase (GPX) has been investigated, using hematoporphyrin derivative as a photosensitizing agent and the human erythrocyte ghost as a target membrane. Photoperoxidized ghosts were reactive in a glutathione peroxidase/reductase (GPX/GRD)-coupled assay only after phospholipid hydrolysis by phospholipase A2 (PLA2). However, enzymatically determined lipid hydroperoxide values were consistently approx. 40% lower than iodometrically determined values throughout the course of photooxidation. Moreover, when irradiated ghosts were analyzed iodometrically during PLA2/GSH/GPX treatment, a residual 30-40% of non-reactive lipid hydroperoxide was observed. The possibility that cholesterol product(s) account for the non-reactive lipid hydroperoxide was examined by tracking cholesterol hydroperoxides in [14C]cholesterol-labeled ghosts. The sum of cholesterol hydroperoxides and GPX/GRD-detectable lipid hydroperoxides was found to agree closely with iodometrically determined lipid hydroperoxide throughout the course of irradiation. Thin-layer chromatography of total lipid extracts indicated that cholesterol hydroperoxide was unaffected by PLA2/GSH/GPX treatment, whereas most of the phospholipid peroxides were completely hydrolyzed and the released fatty acid peroxides were reduced to alcohols. It appears, therefore, that the GPX-resistant lipid hydroperoxides in photooxidized ghosts were derived primarily from cholesterol. Ascorbate plus Fe3+ produced a burst of free-radical lipid peroxidation in photooxidized, PLA2-treated ghosts. As expected for fatty acid hydroperoxide inactivation, the lipid peroxidation was inhibited by GSH/GPX, but only partially so, suggesting that cholesterol hydroperoxide-derived radicals play a major role in the reaction.  相似文献   

20.
A study of the reactivity of HO2/O2- with unsaturated hydroperoxides/peroxides was carried out in a stopped-flow spectrophotometer equipped with an O2--generating plasma lamp. The results show that, in 80% aqueous ethanol solution containing either 0.05 M H2SO4 (for HO2 studies) or 0.005 M KOH (for O2- studies), these oxy-radicals do not react with oleic acid hydroperoxide, linoleic acid hydroperoxide, 1-hydroperoxy-2-cyclooctene, and tert-butyl allyl peroxide. These findings are discussed in the light of conflicting evidence concerning the reaction of HO2/O2- with organic hydroperoxides/peroxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号