首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Association between protein inclusions and neurodegenerative diseases, including Parkinson's and Alzheimer's diseases, and polyglutamine disorders, has been widely documented. Although ubiquitin is conjugated to many of these aggregated proteins, the 26S proteasome does not efficiently degrade them. Mutations in the ubiquitin-protein ligase Parkin are associated with autosomal recessive juvenile Parkinsonism. Although Parkin-positive inclusions are not detected in brains of autosomal recessive juvenile Parkinsonism patients, Parkin is found in Lewy bodies in sporadic disease. This suggests that loss of Parkin ligase activity via mutation, or sequestration to Lewy bodies, is a contributory factor to sporadic disease onset. We now demonstrate that decreased proteasomal activity causes formation of large, noncytotoxic inclusions within the cytoplasm of both neuronal and nonneuronal cells overexpressing Parkin. This is not a general phenomenon as there is an absence of similar inclusions when HHARI, a structural homolog of Parkin, is overexpressed. The inclusions colocalize with ubiquitin and with proteasomes. Furthermore, Parkin inclusions colocalize with gamma-tubulin, acetylated alpha-tubulin, and cause redistribution of vimentin, suggesting aggresome-like properties. Our data imply that lower proteasomal activity, previously observed in brain tissue of Parkinson's disease patients, leads to Parkin accumulation and a concomitant reduction in ligase activity, thereby promoting Lewy body formation.  相似文献   

2.
Neuropathological investigations have identified major hallmarks of chronic neurodegenerative disease. These include protein aggregates called Lewy bodies in dementia with Lewy bodies and Parkinson's disease. Mutations in the alpha-synuclein gene have been found in familial disease and this has led to intense focused research in vitro and in transgenic animals to mimic and understand Parkinson's disease. A decade of transgenesis has lead to overexpression of wild type and mutated alpha-synuclein, but without faithful reproduction of human neuropathology and movement disorder. In particular, widespread regional neuronal cell death in the substantia nigra associated with human disease has not been described. The intraneuronal protein aggregates (inclusions) in all of the human chronic neurodegenerative diseases contain ubiquitylated proteins. There could be several reasons for the accumulation of ubiquitylated proteins, including malfunction of the ubiquitin proteasome system (UPS). This hypothesis has been genetically tested in mice by conditional deletion of a proteasomal regulatory ATPase gene. The consequences of gene ablation in the forebrain include extensive neuronal death and the production of Lewy-like bodies containing ubiquitylated proteins as in dementia with Lewy bodies. Gene deletion in catecholaminergic neurons, including in the substantia nigra, recapitulates the neuropathology of Parkinson's disease.  相似文献   

3.
Parkin accumulation in aggresomes due to proteasome impairment   总被引:16,自引:0,他引:16  
Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra and by the presence of ubiquitinated cytoplasmic inclusions known as Lewy bodies. Alpha-synuclein and Parkin are two of the proteins associated with inherited forms of PD and are found in Lewy bodies. Whereas numerous reports indicate the tendency of alpha-synuclein to aggregate both in vitro and in vivo, no information is available about similar physical properties for Parkin. Here we show that overexpression of Parkin in the presence of proteasome inhibitors leads to the formation of aggresome-like perinuclear inclusions. These eosinophilic inclusions share many characteristics with Lewy bodies, including a core and halo organization, immunoreactivity to ubiquitin, alpha-synuclein, synphilin-1, Parkin, molecular chaperones, and proteasome subunit as well as staining of some with thioflavin S. We propose that the process of Lewy body formation may be akin to that of aggresome-like structures. The tendency of wild-type Parkin to aggregate and form inclusions may have implications for the pathogenesis of sporadic PD.  相似文献   

4.
5.
PArkin Co-Regulated Gene is a gene that shares a bidirectional promoter with the Parkinson's disease associated gene parkin. The encoded protein (PACRG) is found in Lewy bodies and glial cytoplasmic inclusions, the pathological hallmarks of parkinsonian disorders. To investigate the function and regulation of PACRG, cells were treated with the proteasomal inhibitor, MG-132. As previously reported with parkin, inhibition of the proteasome resulted in the formation of aggresomes that contained endogenous PACRG. Increased levels of exogenous PACRG resulted in an increase in aggresome formation, and conferred significant resistance to aggresome disruption and cell death mediated by microtubule depolymerisation. In contrast, shRNA mediated knockdown of PACRG significantly reduced aggresome numbers. Elevated levels of PACRG also resulted in increased autophagy, as demonstrated by biochemical and quantitative analysis of autophagic vesicles, whereas lowered levels of PACRG resulted in reduced autophagy. These results suggest a role for PACRG in aggresome formation and establish a further link between the UPS and autophagy.  相似文献   

6.
Dorfin, a RING-IBR type ubiquitin ligase (E3), can ubiquitylate mutant superoxide dismutase 1, the causative gene of familial amyotrophic lateral sclerosis (ALS). Dorfin is located in ubiquitylated inclusions (UBIs) in various neurodegenerative disorders, such as ALS and Parkinson's disease (PD). Here we report that Valosin-containing protein (VCP) directly binds to Dorfin and that VCP ATPase activity profoundly contributes to the E3 activity of Dorfin. High through-put analysis using mass spectrometry identified VCP as a candidate of Dorfin-associated protein. Glycerol gradient centrifugation analysis showed that endogenous Dorfin consisted of a 400-600-kDa complex and was co-immunoprecipitated with endogenous VCP. In vitro experiments showed that Dorfin interacted directly with VCP through its C-terminal region. These two proteins were colocalized in aggresomes in HEK293 cells and UBIs in the affected neurons of ALS and PD. VCP(K524A), a dominant negative form of VCP, reduced the E3 activity of Dorfin against mutant superoxide dismutase 1, whereas it had no effect on the autoubiquitylation of Parkin. Our results indicate that VCPs functionally regulate Dorfin through direct interaction and that their functional interplay may be related to the process of UBI formation in neurodegenerative disorders, such as ALS or PD.  相似文献   

7.
Parkinson's disease is characterized by the progressive and selective loss of the dopaminergic neurons in the substantia nigra and the presence of ubiquitinated protein inclusions termed Lewy bodies. In the past six years, four genes involved in rare inherited forms of Parkinson's disease have been identified: mutations in the alpha-synuclein and ubiquitin carboxyterminal hydrolase L1 genes (UCH-L1) cause autosomal dominant forms, whereas mutations in the Parkin and DJ-1 genes are responsible for autosomal recessive forms of the disease. A toxic gain of function related to the ability of alpha-synuclein to assemble into insoluble amyloid fibrils may underlie neuronal cell death in parkinsonism due to alpha-synuclein gene mutations. In contrast, loss of protein function appears to be the cause of the disease in parkinsonism due to mutations in the genes encoding Parkin and UCH-L1, which are key enzymes of the ubiquitin-proteasome pathway. The presence of alpha-synuclein, Parkin and UCH-L1 in Lewy bodies suggests that dysfunction of pathways involved in protein folding and degradation is not only involved in the pathogenesis of familial Parkinson's disease, but could also play a role in the frequent sporadic form of the disease (idiopathic Parkinson's disease).  相似文献   

8.
At the neuropathological level, Parkinson's disease (PD) is characterized by the accumulation of misfolded proteins, which can trigger the unfolded protein response (UPR). UCH-L1 is a component of ubiquitin proteasome system (UPS). It is reported that the loss of its function will impair ubiquitin proteasome system and cause toxicity to cells. But its mechanism has not been illustrated. In this study, we detected the protein expression of Bip/Grp78 and the spliced form of XBP-1 to examine the activation of unfolded protein response after SK-N-SH cells being treated with LDN-57444, a UCH-L1 inhibitor which could inhibit UCH-L1 hydrolase activity. Our data showed that UCH-L1 inhibitor was able to cause cell death through the apoptosis pathway by decreasing the activity of ubiquitin proteasome system and increasing the levels of highly ubiquitinated proteins, both of which can activate unfolded protein response. There is a lot of evidence that unfolded protein response is activated as a protective response at the early stage of the stress; this protective response can switch to a pro-apoptotic response when the stress persists. In this study, we demonstrated this switch by detecting the upregulation of CHOP/Gadd153. Taken together, our data indicated that the apoptosis induced by UCH-L1 inhibitor may be triggered by the activation of endoplasmic reticulum stress (ERS). Moreover, we provide a new cell model for studying the roles of UCH-L1 in Parkinson's disease.  相似文献   

9.
Ardley HC  Hung CC  Robinson PA 《FEBS letters》2005,579(3):571-576
Association of protein inclusions or aggregates within brain tissues of patients with neurodegenerative disorders has been widely reported. These inclusions are commonly characterised both by the presence of ubiquitylated proteins and the sequestration of components of the ubiquitin-proteasome system (UPS). Such observations have led to the proposition that the UPS has a direct role in their formation. Indeed, the presence of ubiquitylated proteins and UPS components in inclusions may reflect unsuccessful attempts by the UPS to remove aggregating proteins. Whether the physical presence of inclusions causes cell death or, conversely, whether they are non-toxic and their presence reflects a cellular protective mechanism remains highly controversial.  相似文献   

10.
Huntington's disease is a progressive neurodegenerative disorder that is associated with a CAG repeat expansion in the gene encoding huntingtin. We found that a 60-kDa protein was increased in Neuro2a cells expressing the N-terminal portion of huntingtin with expanded polyglutamine. We purified this protein, and, using mass spectrometry, identified it as p62, an ubiquitin-associated domain-containing protein. A specific p62 antibody stained the ubiquitylated polyQ inclusions in expanded polyglutamine-expressing cells, as well as in the brain of the huntingtin exon 1 transgenic mice. Furthermore, the level of p62 protein and mRNA was increased in expanded polyglutamine-expressing cells. We also found that p62 formed aggresome-like inclusions when p62 was increased in normal Neuro2a cells by a proteasome inhibitor. Knock-down of p62 does not affect the formation of aggresomes or polyglutamine inclusions, suggesting that p62 is recruited to the aggresome or inclusions secondary to their formation. These results suggest that p62 may play important roles as a responsive protein to a polyglutamine-induced stress rather than as a cross-linker between ubiquitylated proteins.  相似文献   

11.
Yang Y  Nishimura I  Imai Y  Takahashi R  Lu B 《Neuron》2003,37(6):911-924
Parkin, an E3 ubiquitin ligase that degrades proteins with aberrant conformations, is associated with autosomal recessive juvenile Parkinsonism (AR-JP). The molecular basis of selective neuronal death in AR-JP is unknown. Here we show in an organismal system that panneuronal expression of Parkin substrate Pael-R causes age-dependent selective degeneration of Drosophila dopaminergic (DA) neurons. Coexpression of Parkin degrades Pael-R and suppresses its toxicity, whereas interfering with endogenous Drosophila Parkin function promotes Pael-R accumulation and augments its toxicity. Furthermore, overexpression of Parkin can mitigate alpha-Synuclein-induced neuritic pathology and suppress its toxicity. Our study implicates Parkin as a central player in the molecular pathway of Parkinson's disease (PD) and suggests that manipulating Parkin expression may provide a novel avenue of PD therapy.  相似文献   

12.
Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective   总被引:15,自引:0,他引:15  
Lewy bodies (LBs), which are the hallmark pathologic features of Parkinson's disease and of dementia with LBs, have several morphologic and molecular similarities to aggresomes. Whether such cytoplasmic inclusions contribute to neuronal death or protect cells from the toxic effects of misfolded proteins remains controversial. In this report, the role of aggresomes in cell viability was addressed in the context of over-expressing alpha-synuclein and its interacting partner synphilin-1 using engineered 293T cells. Inhibition of proteasome activity elicited the formation of juxtanuclear aggregates with characteristics of aggresomes including immunoreactivity for vimentin, gamma-tubulin, ubiquitin, proteasome subunit, and hsp70. As expected from the properties of aggresomes, the microtubule disrupting agents, vinblastin and nocodazole, markedly prevented the formation of these inclusions. Similar to LBs, the phosphorylated form of alpha-synuclein co-localized in these synphilin-1-containing aggresomes. Although the caspase inhibitor z-VAD-fmk significantly reduced the number of apoptotic cells, it had no impact on the percentage of aggresome-positive cells. Finally, quantitative analysis revealed aggresomes in 60% of nonapoptotic cells but only in 10% of apoptotic cells. Additionally, alpha-synuclein-induced apoptosis was not coupled with increased prevalence of aggresome-bearing cells. Taken together, these observations indicate a disconnection between aggresome formation and apoptosis, and support a protective role for these inclusions from the toxicity associated with the combined over-expression of alpha-synuclein and synphilin-1.  相似文献   

13.
Protein aggregates are oligomeric complexes of misfolded proteins, and serve as the seeds of inclusion bodies termed aggresomes in the cells. Heat shock proteins (Hsps) prevent misfolding and aggregate formation. Here, we found that only avian Hsp25 dominantly accumulated in the aggresomes induced by proteasome inhibition. Molecular cloning of chicken Hsp25 (cHsp25) revealed that it belongs to the Hsp30 family, which is a subfamily of the alpha-crystallin/small Hsp gene family. Unexpectedly, overexpression of cHsp25 into HeLa cells promoted inclusion formation whereas overexpression of mouse Hsp27 and its chicken homologue did not. These results suggest that cHsp25 acts differently from other small Hsps on protein aggregates.  相似文献   

14.
PINK1 and Parkin mutations cause recessive Parkinson's disease (PD). In Drosophila and SH-SY5Y cells, Parkin is recruited by PINK1 to damaged mitochondria, where it ubiquitinates Mitofusins and consequently promotes mitochondrial fission and mitophagy.Here, we investigated the impact of mutations in endogenous PINK1 and Parkin on the ubiquitination of mitochondrial fusion and fission factors and the mitochondrial network structure. Treating control fibroblasts with mitochondrial membrane potential (Δψ) inhibitors or H(2)O(2) resulted in ubiquitination of Mfn1/2 but not of OPA1 or Fis1. Ubiquitination of Mitofusins through the PINK1/Parkin pathway was observed within 1 h of treatment. Upon combined inhibition of Δψ and the ubiquitin proteasome system (UPS), no ubiquitination of Mitofusins was detected. Regarding morphological changes, we observed a trend towards increased mitochondrial branching in PD patient cells upon mitochondrial stress.For the first time in PD patient-derived cells, we demonstrate that mutations in PINK1 and Parkin impair ubiquitination of Mitofusins. In the presence of UPS inhibitors, ubiquitinated Mitofusin is deubiquitinated by the UPS but not degraded, suggesting that the UPS is involved in Mitofusin degradation.  相似文献   

15.
Mutations in alpha-synuclein, Parkin, and UCH-L1 cause heritable forms of Parkinson disease. Unlike alpha-synuclein, for which no precise biochemical function has been elucidated, Parkin functions as a ubiquitin E3 ligase, and UCH-L1 is a deubiquitinating enzyme. The E3 ligase activity of Parkin in Parkinson disease is poorly understood and is further obscured by the fact that multiubiquitin chains can be formed through distinct types of linkages that regulate diverse cellular processes. For instance, ubiquitin lysine 48-linked multiubiquitin chains target substrates to the proteasome, whereas ubiquitin lysine 63-linked chains control ribosome function, protein sorting and trafficking, and endocytosis of membrane proteins. It is notable in this regard that ubiquitin lysine 63-linked chains promote the degradation of membrane proteins by the lysosome. Because both Parkin and alpha-synuclein can regulate the activity of the dopamine transporter, we investigated whether they influenced ubiquitin lysine 63-linked chain assembly. These studies revealed novel biochemical activities for both Parkin and alpha-synuclein. We determined that Parkin functions with UbcH13/Uev1a, a dimeric ubiquitin-conjugating enzyme, to assemble ubiquitin lysine 63-linked chains. Our results and the results of others indicate that Parkin can promote both lysine 48- and lysine 63-linked ubiquitin chains. alpha-Synuclein also stimulated the assembly of lysine 63-linked ubiquitin chains. Because UCH-L1, a ubiquitin hydrolase, was recently reported to form lysine 63-linked conjugates, it is evident that three proteins that are genetically linked to Parkinson disease can contribute to lysine 63 multiubiquitin chain formation.  相似文献   

16.
Aggresomes are cytoplasmic inclusions which are localized at the microtubule organizing center (MTOC) as a result of induced proteasome inhibition, stress or over-expression of certain proteins. Aggresomes are linked to the pathogenesis of many neurodegenerative diseases. Here we studied whether amyloid precursor protein (APP), a type-I transmembrane glycoprotein, is localized in aggresomes after exposure to stress condition. Using confocal microscopy we found that APP is located in aggresomes and co-localized with vimentin, γ-tubulin, 20S and ubiquitin at the MTOC in response to proteasome dysfunction. An interaction between vimentin and APP was found after proteasome inhibition suggesting that APP is an additional protein constituent of aggresomes. Suppression of the proteasome system in APP-HEK293 cells overexpressing APP or transfected with APP Swedish mutation caused an accumulation of stable, detergent-insoluble forms of APP containing poly-ubiquitinated proteins. In addition, brain homogenates from transgenic mice expressing human APP with the Arctic mutation demonstrated an interaction between APP and the aggresomal-marker vimentin. These data suggest that malfunctioning of the proteasome system caused by mutation or overexpression of pathological or non-pathological proteins may lead to the accumulation of stable aggresomes, perhaps contributing to the neurodegeneration.  相似文献   

17.
Lewy bodies (LBs) are the pathologic hallmark of Parkinson's disease. Recent studies revealed that LBs exhibit several morphologic and molecular similarities to aggresomes. Aggresomes are perinuclear aggregates representing intracellular deposits of misfolded proteins. Recently, valosin-containing protein (VCP) was one of the components of LBs, suggesting its involvement in LB formation. Here, we showed the localization of VCP in aggresomes induced by a proteasome inhibitor in cultured cells. Cells overexpressing mutant VCP (K524M: D2) showed reduced aggresome formation relative to those overexpressing wild-type and mutant (K251M: D1) VCPs. Our findings suggest that the D2 domain is involved in aggresome formation.  相似文献   

18.
Aggresomes are dynamic structures formed when the ubiquitin–proteasome system is overwhelmed with aggregation-prone proteins. In this process, small protein aggregates are actively transported towards the microtubule-organizing center. A functional role for autophagy in the clearance of aggresomes has also been proposed. In the present work we investigated the molecular mechanisms involved on aggresome formation in cultured rat cardiac myocytes exposed to glucose deprivation. Confocal microscopy showed that small aggregates of polyubiquitinated proteins were formed in cells exposed to glucose deprivation for 6 h. However, at longer times (18 h), aggregates formed large perinuclear inclusions (aggresomes) which colocalized with γ-tubulin (a microtubule-organizing center marker) and Hsp70. The microtubule disrupting agent vinblastine prevented the formation of these inclusions. Both small aggregates and aggresomes colocalized with autophagy markers such as GFP-LC3 and Rab24. Glucose deprivation stimulates reactive oxygen species (ROS) production and decreases intracellular glutathione levels. ROS inhibition by N-acetylcysteine or by the adenoviral overexpression of catalase or superoxide dismutase disrupted aggresome formation and autophagy induced by glucose deprivation. In conclusion, glucose deprivation induces oxidative stress which is associated with aggresome formation and activation of autophagy in cultured cardiac myocytes.  相似文献   

19.
20.
The ubiquitin proteasome system (UPS) comprises hundreds of different conjugation/deconjugation enzymes and multiple receptors that recognize ubiquitylated proteins. A formidable challenge to deciphering the biology of ubiquitin is to map the networks of substrates and ligands for components of the UPS. Several different receptors guide ubiquitylated substrates to the proteasome, and neither the basis for specificity nor the relative contribution of each pathway is known. To address how broad of a role the ubiquitin receptor Rpn10 (S5a) plays in turnover of proteasome substrates, we implemented a method to perform quantitative analysis of ubiquitin conjugates affinity-purified from experimentally perturbed and reference cultures of Saccharomyces cerevisiae that were differentially labeled with 14N and 15N isotopes. Shotgun mass spectrometry coupled with relative quantification using metabolic labeling and statistical analysis based on q values revealed ubiquitylated proteins that increased or decreased in level in response to a particular treatment. We first identified over 225 candidate UPS substrates that accumulated as ubiquitin conjugates upon proteasome inhibition. To determine which of these proteins were influenced by Rpn10, we evaluated the ubiquitin conjugate proteomes in cells lacking either the entire Rpn10 (rpn10delta) (or only its UIM (ubiquitin-interacting motif) polyubiquitin-binding domain (uimdelta)). Twenty-seven percent of the UPS substrates accumulated as ubiquitylated species in rpn10delta cells, whereas only one-fifth as many accumulated in uimdelta cells. These findings underscore a broad role for Rpn10 in turnover of ubiquitylated substrates but a relatively modest role for its ubiquitin-binding UIM domain. This approach illustrates the feasibility of systems-level quantitative analysis to map enzyme-substrate networks in the UPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号