首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
跨太平洋生物入侵研究展望   总被引:26,自引:1,他引:25       下载免费PDF全文
跨太平洋生物入侵是当代最受关注、最具影响的生物学现象之一 ,这一过程导致并促进了新东亚 -北美间断分布格局 (与许多众所周知的古间断分布相对应 )的形成。为了更好地了解这一现象以及相关的生物类群 ,我们探讨了以下几个问题 :1)哪些类型的物种参与或可能会参与跨太平洋生物入侵 ,2 )这些入侵种在入侵之后会发生什么变化以及会导致什么样的后果 ,3)为了有效地监控生物入侵 ,我们应该从哪些方面着手研究入侵种及其原生和非原生生境。为了解决这些问题 ,我们应该对原产地和入侵地的这些物种进行比较研究 ,这些研究包括 :1)遗传学 ,2 )生活史 /形态学 (如 :个体大小、种子大小等 ) ,3)生态学 (如 :生活型 /生长型、传粉媒介和竞争对手等 ) ,4 )在原产地和入侵地的地理分布 (如 :分布区的大小、形状以及纬度等 ) ,5 )物理影响因子 (如土壤、水分和气候等 )。这些研究的目的在于 :1)确定外来种在其原生生境中影响其分布的限制因子 ,2 )了解入侵种能够在入侵地成功的原因 ,3)预测可能进一步发生的生物入侵 ,4 )为有效地监控和管理生物入侵提供资料。  相似文献   

2.
A list of 25 bee species in the families Apidae and Megachilidae is provided for the French West Indies (FWI) along with floral host records from 260 plant species in 71 families. Four species are newly recorded for some islands, as follows: Coelioxys abdominalis Guérin, 1844, new island record for Marie-Galante and Martinique, Centris decolorata Lepeletier, 1841, new island record for Marie-Galante, Melissodes rufodentatus Smith, 1854, is newly recorded from Guadeloupe and Mesoplia azurea (Lepeletier & Serville, 1825) from La Désirade. The bee fauna of the FWI is mostly composed of species that occur (or may be expected to occur) throughout much of the West Indies, combined with species that are widely distributed on the mainland and a proportion of regionally endemic species. In addition to these elements, there appear to be at least a few locally endemic species. A few species of bees appear to be oligolectic; their host plants, however, are visited by a wide variety of bees and other insects. There is only one intentionally introduced bee in Guadeloupe, the European honey bee Apis mellifera Linnaeus, 1758, and three non-native bees that reached the FWI from other parts of the Caribbean and the mainland: Megachile (Pseudomegachile) lanata (Fabricius, 1775), M. (Callomegachile) rufipennis (Fabricius, 1793) and M. (Eutricharaea) concinna Smith, 1879. Honey bees are often extremely abundant, and dominate nectar and pollen resources in ways that are disruptive to native bees. Although it is easy to observe individual honey bees displacing individual native bees on flowers, there are no data on the ecological effects of honey bees on native pollinators in the FWI.  相似文献   

3.
4.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

5.
While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species‐specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare ‘anthrophilic’ species that thrive in the face of anthropogenic disturbance.  相似文献   

6.
In the current context of ongoing global change, the understanding of how the niches of invasive species may change between different geographical areas or time periods is extremely important for the early detection and control of future invasions. We evaluated the effect of climate and non‐climate variables and the sensitivity to various spatial resolutions (i.e. 1 and 20 km) on niche changes during the invasion of Taraxacum officinale and Ulex europaeus in South America. We estimated niche changes using a combination of principal components analyses (PCA) and reciprocal Ecological Niche Modelling (rENM). We further investigated future invasion dynamics under a severe warming scenario for 2050 to unravel the role of niche shifts in the future potential distribution of the species. We observed a clear niche expansion for both species in South America towards higher temperature, precipitation and radiation relative to their native ranges. In contrast, the set of environmental conditions only occupied in the native ranges (i.e. niche unfilling) were less relevant. The magnitude of the niche shifts did not depend on the resolution of the variables. Models calibrated with occurrences from native range predicted large suitable areas in South America (outside of the Andes range) where T. officinale and U. europaeus are currently absent. Additionally, both species could increase their potential distributions by 2050, mostly in the southern part of the continent. In addition, the niche unfilling suggests high potential to invade additional regions in the future, which is extremely relevant considering the current impact of these species in the Southern Hemisphere. These findings confirm that invasive species can occupy new niches that are not predictable from knowledge based only on climate variables or information from the native range.  相似文献   

7.
Island plant–pollinator networks are typically simpler than their continental counterparts and this can make them less resilient to disturbance from exotic species. French Polynesia has a very low diversity of bees, but their status as either native or introduced species has been largely speculative. We combine previous studies with new DNA sequence data to show that 11 bee species have now been recorded for French Polynesia. Haplotype variation at the ‘barcode’ region of the mitochondrial gene cytochrome c oxidase subunit I (COI) for four of these species, Ceratina dentipes Freise, Xylocopa sonorina Smith, Braunsapis puangensis (Cockerell) and Amegilla pulchra (Smith), indicates that they all represent very recent introductions. Apis mellifera Linnaeus was a purposefully introduced species, and four megachilid species probably arrived due to human‐aided dispersal through maritime activities in the Pacific. The two remaining bee species, an unidentified partial specimen of a halictid bee and the colletid bee Hylaeus (P.) tuamotuensis Michener, are collectively known from only four specimens collected in the 1930s and their provenance is uncertain. French Polynesia therefore comprises a region where recently introduced bee species greatly overwhelm any possible native bee fauna. These introductions are likely to have major ecosystem impacts, including disruptions of existing plant–pollinator networks and facilitating the spread of weedy plant species, as well as positive impacts for agriculture. Future biosecurity initiatives need to consider these potential impacts and the likely routes of dispersal to effectively control any further unintended introductions.  相似文献   

8.
Aim Niche‐based distribution models are often used to predict the spread of invasive species. These models assume niche conservation during invasion, but invasive species can have different requirements from populations in their native range for many reasons, including niche evolution. I used distribution modelling to investigate niche conservatism for the Asian tiger mosquito (Aedes albopictus Skuse) during its invasion of three continents. I also used this approach to predict areas at risk of invasion from propagules originating from invasive populations. Location Models were created for Southeast Asia, North and South America, and Europe. Methods I used maximum entropy (Maxent ) to create distribution models using occurrence data and 18 environmental datasets. One native model was created for Southeast Asia; this model was projected onto North America, South America and Europe. Three models were created independently for the non‐native ranges and projected onto the native range. Niche overlap between native and non‐native predictions was evaluated by comparing probability surfaces between models using real data and random models generated using a permutation approach. Results The native model failed to predict an entire region of occurrences in South America, approximately 20% of occurrences in North America and nearly all Italian occurrences of A. albopictus. Non‐native models poorly predict the native range, but predict additional areas at risk for invasion globally. Niche overlap metrics indicate that non‐native distributions are more similar to the native niche than a random prediction, but they are not equivalent. Multivariate analyses support modelled differences in niche characteristics among continents, and reveal important variables explaining these differences. Main conclusions The niche of A. albopictus has shifted on invaded continents relative to its native range (Southeast Asia). Statistical comparisons reveal that the niche for introduced distributions is not equivalent to the native niche. Furthermore, reciprocal models highlight the importance of controlling bi‐directional dispersal between native and non‐native distributions.  相似文献   

9.
Species climate requirements are useful for predicting their geographic distribution. It is often assumed that the niche requirements for invasive plants are conserved during invasion, especially when the invaded regions share similar climate conditions. California and central Chile have a remarkable degree of convergence in their vegetation structure, and a similar Mediterranean climate. Such similarities make these geographic areas an interesting natural experiment for testing climatic niche dynamics and the equilibrium of invasive species in a new environment. We tested to see if the climatic niche of Eschscholzia californica is conserved in the invaded range (central Chile), and we assessed whether the invasion process has reached a biogeographical equilibrium, i.e., occupy all the suitable geographic locations that have suitable conditions under native niche requirements. We compared the climatic niche in the native and invaded ranges as well as the projected potential geographic distribution in the invaded range. In order to compare climatic niches, we conducted a Principal Component Analysis (PCA) and Species Distribution Models (SDMs), to estimate E. californica''s potential geographic distribution. We also used SDMs to predict altitudinal distribution limits in central Chile. Our results indicated that the climatic niche occupied by E. californica in the invaded range is firmly conserved, occupying a subset of the native climatic niche but leaving a substantial fraction of it unfilled. Comparisons of projected SDMs for central Chile indicate a similarity, yet the projection from native range predicted a larger geographic distribution in central Chile compared to the prediction of the model constructed for central Chile. The projected niche occupancy profile from California predicted a higher mean elevation than that projected from central Chile. We concluded that the invasion process of E. californica in central Chile is consistent with climatic niche conservatism but there is potential for further expansion in Chile.  相似文献   

10.
When exotic plant species share pollinators with native species, competition for pollination may lower the reproductive success of natives by reducing the frequency and/or quality of visits they receive. Exotic species often become numerically dominant in plant communities, and the relative abundance of these potential competitors for pollination may be an important determinant of their effects on the pollination and reproductive success of co-occurring native species. Our study experimentally tests whether the presence and abundance of an invasive exotic, Lythrum salicaria L. (Lythraceae), influences reproductive success of a co-flowering native species, Mimulus ringens L. (Phrymaceae). We also examine the mechanisms of competition for pollination and how they may be altered by changes in competitor abundance. We found that the presence of Lythrum salicaria lowered mean seed number in Mimulus ringens fruits. This effect was most pronounced when the invasive competitor was highly abundant, decreasing the number of seeds per fruit by 40% in 2006 and 33% in 2007. Reductions in the number of seeds per fruit were likely due to reduced visit quality resulting from Mimulus pollen loss when bees foraged on neighboring Lythrum plants. This study suggests that visit quality to natives may be influenced by the presence and abundance of invasive flowering plants.  相似文献   

11.
Communities subject to stress, including those with low invasibility, may be dominated by exotic generalist species. African grasses are aggressive invasive species in Neotropical savannas, where their response to abiotic stress remains unknown. We assessed the role of waterlogging and canopy closure on the presence, abundance and reproductive tillering of African and native grasses in a Neotropical savanna in southeastern Brazil. We obtained abundance and reproductive tillering data of exotic (Melinis minutiflora, Melinis repens and Urochloa decumbens) and common native grasses in 20 sites. We also determined the groundwater depth, soil surface water potential and canopy cover at these sites. The grass species generally had a low frequency and performed poorly where soil remained waterlogged throughout the year, except for two native species. Most native species were exclusive to either well‐drained savannas or better drained wet grasslands. However, two species (Loudetiopsis chrysothrix and Trachypogon spicatus) occurred in both vegetation types. Two exotic species (M. minutiflora and M. repens) were less common but demonstrated reasonable performance in wet grasslands, possibly due to their root system plasticity. Furthermore, U. decumbens had a lower occurrence, density and reproductive tillering at these sites, but was successful at sites where the groundwater level was slightly deeper. Although the favourable water regime in the savannas increases their invasibility in general, resistance to invasion by African grasses may be greater at microsites with high canopy closure, where these species showed lower performance and did not affect the abundance of co‐occurring native grasses. In summary, the Brazilian savanna becomes more susceptible to the spread of African grasses when disturbances decrease canopy closure or lower rainfall associated with climate change reduces the average groundwater depth and consequently releases invasive species from soil waterlogging in grasslands.  相似文献   

12.
Native and exotic plants can influence one another's fecundity through their influence on shared pollinators. Specifically, invasion may alter abundance and composition of local floral resources, affecting pollinator visitation and ultimately causing seedset of natives in more‐invaded and less‐invaded floral neighborhoods to differ. Such pollinator‐mediated effects of exotic plants on natives are common, but native and exotic plants often share multiple pollinators, which may differ in their responses to altered floral neighborhoods. We quantified pollinator‐mediated interactions between three common forbs of western Washington prairies (native Microseris laciniata and Eriophyllum lanatum and European Hypochaeris radicata) in three floral neighborhoods: 1) high native and low exotic floral density, 2) high exotic floral density and low native density, and 3) experimentally manipulated low exotic floral density. Pollinator visitation rates varied by floral neighborhood, plant species identity, and their interaction for all three plant species. Similarly, pollinator functional groups (eusocial bees, solitary bees, and syrphid flies) contributed differing proportions of total visitation to each species depending upon neighborhood context. Consequently, in exotic neighborhoods H. radicata competed with native M. laciniata, reducing seed set, while simultaneously facilitating visitation and seed set for native E. lanatum. Seed set of H. radicata was also highest in exotic neighborhoods (with high densities of conspecifics), raising the possibility of a positive feedback between exotic abundance and success. Our results suggest that the outcome of indirect interactions between native and exotic plants depends on the density and the composition of the floral neighborhood and of the pollinator fauna, and on context‐dependent pollinator foraging.  相似文献   

13.
Inland aquatic ecosystems are vulnerable to both climate change and biological invasion at broad spatial scales. The aim of this study was to establish the current and future potential distribution of three invasive plant taxa, Egeria densa, Myriophyllum aquaticum and Ludwigia spp., in their native and exotic ranges. We used species distribution models (SDMs), with nine different algorithms and three global circulation models, and we restricted the suitability maps to cells containing aquatic ecosystems. The current bioclimatic range of the taxa was predicted to represent 6.6–12.3% of their suitable habitats at global scale, with a lot of variations between continents. In Europe and North America, their invasive ranges are predicted to increase up to two fold by 2070 with the highest gas emission scenario. Suitable new areas will mainly be located to the north of their current range. In other continents where they are exotic and in their native range (South America), the surface areas of suitable locations are predicted to decrease with climate change, especially for Ludwigia spp. in South America (down to ?55% by 2070 with RCP 8.5 scenario). This study allows to identify areas vulnerable to ongoing invasions by aquatic plant species and thus could help the prioritisation of monitoring and management, as well as contribute to the public awareness regarding biological invasions.  相似文献   

14.
The evolutionary history of invasive species within their native range may involve key processes that allow them to colonize new habitats. Therefore, phylogeographic studies of invasive species within their native ranges are useful to understand invasion biology in an evolutionary context. Here we integrated classical and Bayesian phylogeographic methods using mitochondrial and nuclear DNA markers with a palaeodistribution modelling approach, to infer the phylogeographic history of the invasive ant Wasmannia auropunctata across its native distribution in South America. We discuss our results in the context of the recent establishment of this mostly tropical species in the Mediterranean region. Our Bayesian phylogeographic analysis suggests that the common ancestor of the two main clades of W. auropunctata occurred in central Brazil during the Pliocene. Clade A would have differentiated northward and clade B southward, followed by a secondary contact beginning about 380 000 years ago in central South America. There were differences in the most suitable habitats among clades when considering three distinct climatic periods, suggesting that genetic differentiation was accompanied by changes in niche requirements, clade A being a tropical lineage and clade B a subtropical and temperate lineage. Only clade B reached more southern latitudes, with a colder climate than that of northern South America. This is concordant with the adaptation of this originally tropical ant species to temperate climates prior to its successful establishment in the Mediterranean region. This study highlights the usefulness of exploring the evolutionary history of invasive species within their native ranges to better understand biological invasions.  相似文献   

15.
Although the number of invasive bryophytes is much lower than that of higher plants, they threaten habitats that are often species rich and of high conservation relevance. Their potential of spread has, however, never been determined. Here, we assess whether the three most invasive bryophyte species shifted their niche during the invasion process and whether the extent of the study area defined to calibrate the model (geographic background, GB) affects model transferability. We then determine whether ecological niche models (ENMs) developed in their native range can be projected in other areas to assess their invasive potential. The macroclimatic niches of Campylopus introflexus, Orthodontium lineare and Lophocolea semiteres were compared in their native range (Southern Hemisphere) and in their invasion range (Northern Hemisphere) using ordination techniques. ENMs from an ensemble model were calibrated in the native range and projected onto the Northern Hemisphere using different GBs. No evidence for niche expansion in the invaded range was found and the species occur in the invaded range under climate conditions that are similar to those in the native range. The performance of the models to predict occurrences in the invaded range increased with the extent of the GB. The potential range of all species included entire regions on continents where they are still absent. The expansion of the investigated species appears to be constrained by climate conditions that are similar to those currently prevailing in their native range, which is consistent with our failure to demonstrate macroclimatic niche shift in the invaded range. The use of large GBs is recommended in such vagile organisms with large, disjunct distributions. The models indicated that invasive bryophyte species might become a threat in central and eastern Europe, North America and eastern Asia if accidentally introduced or naturally dispersed.  相似文献   

16.
Pollination mechanisms and pollinators are reported for a total of 137 species (75% of the non-abiotically pollinated flora) as they occur at three altitudinal levels (subandean scrub: 2,200–2,600 m; cushion-plant zone: 2,700–3,100 m; subnival feldfield: 3,200–3,600 m) in the Andean (alpine) zone on the Cordon del Cepo (33°17'S) in central Chile as part of community oriented research in reproductive biology in the high temperate Andes of South America. Only around 4% of the species studied failed to be visited by potential pollinators. Hymenopterans (principally bees) are important pollinators of 50% of the biotically pollinated flora, butterflies of 24% and flies of 46%. Other vectors include beetles, moths, and hummingbirds. An estimated 17% of the flora is anemophilous. Bee species-richness, specialist feeding, and melittophily reach maxima in the subandean scrub; thereafter, bees diminish rapidly in number, with bees pollinating only 13% of the subnival flora as contrasted with 68% of the subandean flora. Although fly and butterfly species-richness also decline with increasing altitude, the proportions of species pollinated by these vectors actually increases. High-altitude populations of melittophilous species with broad altitudinal ranges are invariably serviced by fewer bee species as compared with lower populations. The rich bee fauna at the lower end of the Andean zone in central Chile appears to have resulted from upward colonization from that of the subtending lowland Mediterranean sclerophyllous woodland vegetation. Altitudinal variation in pollination spectra is discussed in relation to contrasting life history characteristics and different modes of thermoregulation in the insect groups involved.  相似文献   

17.
Biological invasion is increasingly recognized as one of the greatest threats to biodiversity. Using ensemble forecasts from species distribution models to project future suitable areas of the 100 of the world's worst invasive species defined by the International Union for the Conservation of Nature, we show that both climate and land use changes will likely cause drastic species range shifts. Looking at potential spatial aggregation of invasive species, we identify three future hotspots of invasion in Europe, northeastern North America, and Oceania. We also emphasize that some regions could lose a significant number of invasive alien species, creating opportunities for ecosystem restoration. From the list of 100, scenarios of potential range distributions show a consistent shrinking for invasive amphibians and birds, while for aquatic and terrestrial invertebrates distributions are projected to substantially increase in most cases. Given the harmful impacts these invasive species currently have on ecosystems, these species will likely dramatically influence the future of biodiversity.  相似文献   

18.
The role of exotic species in homogenizing the North American flora   总被引:6,自引:0,他引:6  
Qian H  Ricklefs RE 《Ecology letters》2006,9(12):1293-1298
Exotic species have begun to homogenize the global biota, yet few data are available to assess the extent of this process or factors that constrain its advance at global or continental scales. We evaluate homogenization of vascular plants across America north of Mexico by comparing similarity in the complete native and exotic floras between states and provinces of the USA and Canada. Compared with native species, exotic plants are distributed haphazardly among areas but spread more widely, producing differentiation of floras among neighbouring areas but homogenization at greater distance. The number of exotic species is more closely associated with the size of the human population than with ecological conditions, as in the case of native species, and their distributions are less influenced by climate than those of native species.  相似文献   

19.
Aim Anticipating the potential distributions of emerging invasive species is complicated by the tendency for species distribution models to perform better when both native and invasive range data are available for model development. If invasive range data are lacking, species models are liable to under‐estimate distributions for emerging invaders, particularly for species that are not at equilibrium with their native range environment due to historical factors, dispersal limitation and/or ecological interactions. We demonstrate the potential to use well‐quantified niche shifts from established ‘avatar’ (i.e. the remote or virtual manifestation of an entity) invaders to develop plausible distributions for data‐poor emerging invaders contingent on niche shifts of similar magnitude or character. Location Global. Methods Using the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii as our avatar invaders, we quantify how niche position, size and structure differs between native and total ranges using Mahalanobis distance (a measure of multivariate similarity) and the climate predictors of annual minimum and maximum air temperature. We then generalize patterns of niche shift from these species to the emerging crayfish invader Cherax quadricarinatus. Results Some patterns of niche shifts were similar for Pacifastacus leniusculus and Procambarus clarkii, but niche shifts were of considerably greater magnitude for P. clarkii. When a native range model for C. quadricarinatus was modified with generalized niche shifts similar to Pacifastacus leniusculus and Procambarus clarkii, the potential global distribution for this species increased considerably, including many areas not identified by the native range model. Main conclusions We illustrate the potential to use avatar invaders to provide cautionary, niche shift‐assuming species distribution models for emerging invaders. Many theoretical and applied implications of the avatar species concept require additional investigation, including the development of frameworks to select appropriate avatar species and evaluate the performance of avatar‐derived models for emerging invaders. Despite these research needs, we believe this concept will have considerable utility for predicting vulnerability to invasion by data‐poor species; this is a critical management need because shifting pathways of introduction and climate change will produce many novel, emerging invasive species in the future.  相似文献   

20.

The capacity to assess invasion risk from potential crop pests before invasion of new regions globally would be invaluable, but this requires the ability to predict accurately their potential geographic range and relative abundance in novel areas. This may be unachievable using de facto standard correlative methods as shown for the South American tomato pinworm Tuta absoluta, a serious insect pest of tomato native to South America. Its global invasive potential was not identified until after rapid invasion of Europe, followed by Africa and parts of Asia where it has become a major food security problem on solanaceous crops. Early prospective assessment of its potential range is possible using physiologically based demographic modeling that would have identified knowledge gaps in T. absoluta biology at low temperatures. Physiologically based demographic models (PBDMs) realistically capture the weather-driven biology in a mechanistic way allowing evaluation of invasive risk in novel areas and climes including climate change. PBDMs explain the biological bases for the geographic distribution, are generally applicable to species of any taxa, are not limited to terrestrial ecosystems, and hence can be extended to support ecological risk modeling in aquatic ecosystems. PBDMs address a lack of unified general methods for assessing and managing invasive species that has limited invasion biology from becoming a more predictive science.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号