首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
多倍体植物的表观遗传现象   总被引:4,自引:0,他引:4  
杨俊宝  彭正松 《遗传》2005,27(2):335-342
表观遗传现象是指基因表达发生改变但不涉及DNA序列的变化, 它存在于许多植物的多倍体化过程中,而且能够在代与代之间传递。表观遗传变异包括基因沉默、DNA甲基化、核仁显性、休眠转座子激活和基因组印记等方面。这种现象可能是由于基因组间的相互作用直接诱发基因沉默或基因表达改变所致;也可能由DNA甲基化之外的组蛋白编码的改变引起;或者与甲基化不足、染色质重组或转座子激活等有关。表观遗传变异在提高基因表达的多样性,引起遗传学和细胞学上的二倍化,以及促进基因组间的相互协调等方面起着重要作用。文章综述了植物多倍体化过程中的表观遗传现象及其在多倍体植物基因组进化中的作用,并在此基础上提出了今后在这方面的研究途径。  相似文献   

2.
Intergenomic interactions that include homoeologous recombinations and intergenomic translocations are commonly observed in plant allopolyploids. Homoeologous recombinations have recently been documented in unisexual salamanders in the genus Ambystoma and revealed exchanged chromosomal segments between A. laterale and A.jeffersonianum genomes in individual unisexuals. We discovered intergenomic translocations in two widespread unisexual triploids A.laterale--2 jeffersonianum (or LJJ) and its tetraploid derivative A.laterale--3 jeffersonianum (or LJJJ) by genomic in situ hybridization (GISH). Two different types of intergenomic translocations were observed in two unisexual populations and one contained novel chromosomes generated by an intergenomic reciprocal translocation. We also observed chromosome deletions in several individuals and these chromosome fragmentations were all derived from the A. jeffersonianum genome. These observed intergenomic reciprocal translocations are believed to be caused by non-homologous pairing during meiosis followed by breakage-rejoining events. Genomes of unisexual Ambystoma undergo complicated structural changes that include various intergenomic exchanges that offer unisexuals genetic and phenotypic complexity to escape their evolutionary demise. Unisexual Ambystoma have persisted as natural nuclear genomic hybrids for about four million years. These unisexuals provide a vertebrate model system to examine the interaction of distinct genomes and to evaluate the corresponding genetic, developmental and evolutionary implications of intergenomic exchanges. Intergenomic translocations and homoeologous recombinations appear to be frequent chromosome reconstruction events among unisexual Ambystoma.  相似文献   

3.
4.
Allopolyploidy--a shaping force in the evolution of wheat genomes   总被引:2,自引:0,他引:2  
  相似文献   

5.
Cui C  Ge X  Gautam M  Kang L  Li Z 《Genetics》2012,191(3):725-738
Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids.  相似文献   

6.
7.
Evolution of duplicate gene expression in polyploid and hybrid plants   总被引:9,自引:0,他引:9  
Allopolyploidy is a prominent mode of speciation in flowering plants. On allopolyploidy, genomic changes can take place, including chromosomal rearrangement and changes in gene expression; these processes continue over evolutionary time. Recent studies of gene expression in polyploid and hybrid plants, reviewed here, have examined expression in natural polyploids and synthetic neopolyploids as well as in diploid and F(1) hybrids. Considerable changes in gene expression have been observed in allopolyploids, including up- or downregulation of expression in the polyploids compared with their parents, unequal expression of duplicated genes, and silencing of one copy. Genes in a variety of functional categories show altered expression, and the patterns vary considerably by gene. Some changes seem to be stochastic, whereas others are repeatable. Gene expression changes can be organ specific. Reciprocal silencing of duplicates in different organs has been observed, suggesting subfunctionalization and long-term retention of duplicates. It has become clear that hybridization has a much greater effect than chromosome doubling on gene expression in allopolyploids. Diploid and triploid F(1) hybrids can show alterations of expression levels compared with their parents. Parent-of-origin effects on gene expression have been examined, and loss of gene imprinting has been shown. Some gene expression changes in polyploids and hybrids can be correlated with phenotypic effects. Demonstrated mechanisms of gene expression changes include DNA methylation, histone modifications, and antisense RNA. Several hypotheses have been proposed for why gene expression is altered in allopolyploids and hybrids.  相似文献   

8.
To better understand genetic events that accompany allopolyploid formation, we studied the rate and time of elimination of eight DNA sequences in F1 hybrids and newly formed allopolyploids of Aegilops and Triticum. In total, 35 interspecific and intergeneric F1 hybrids and 22 derived allopolyploids were analyzed and compared with their direct parental plants. The studied sequences exist in all the diploid species of the Triticeae but occur in only one genome, either in one homologous pair (chromosome-specific sequences [CSSs]) or in several pairs of the same genome (genome-specific sequences [GSSs]), in the polyploid wheats. It was found that rapid elimination of CSSs and GSSs is a general phenomenon in newly synthesized allopolyploids. Elimination of GSSs was already initiated in F1 plants and was completed in the second or third allopolyploid generation, whereas elimination of CSSs started in the first allopolyploid generation and was completed in the second or third generation. Sequence elimination started earlier in allopolyploids whose genome constitution was analogous to natural polyploids compared with allopolyploids that do not occur in nature. Elimination is a nonrandom and reproducible event whose direction was determined by the genomic combination of the hybrid or the allopolyploid. It was not affected by the genotype of the parental plants, by their cytoplasm, or by the ploidy level, and it did not result from intergenomic recombination. Allopolyploidy-induced sequence elimination occurred in a sizable fraction of the genome and in sequences that were apparently noncoding. This finding suggests a role in augmenting the differentiation of homoeologous chromosomes at the polyploid level, thereby providing the physical basis for the diploid-like meiotic behavior of newly formed allopolyploids. In our view, this rapid genome adjustment may have contributed to the successful establishment of newly formed allopolyploids as new species.  相似文献   

9.
Ozkan H  Levy AA  Feldman M 《The Plant cell》2001,13(8):1735-1747
To better understand genetic events that accompany allopolyploid formation, we studied the rate and time of elimination of eight DNA sequences in F1 hybrids and newly formed allopolyploids of Aegilops and TRITICUM: In total, 35 interspecific and intergeneric F1 hybrids and 22 derived allopolyploids were analyzed and compared with their direct parental plants. The studied sequences exist in all the diploid species of the Triticeae but occur in only one genome, either in one homologous pair (chromosome-specific sequences [CSSs]) or in several pairs of the same genome (genome-specific sequences [GSSs]), in the polyploid wheats. It was found that rapid elimination of CSSs and GSSs is a general phenomenon in newly synthesized allopolyploids. Elimination of GSSs was already initiated in F1 plants and was completed in the second or third allopolyploid generation, whereas elimination of CSSs started in the first allopolyploid generation and was completed in the second or third generation. Sequence elimination started earlier in allopolyploids whose genome constitution was analogous to natural polyploids compared with allopolyploids that do not occur in nature. Elimination is a nonrandom and reproducible event whose direction was determined by the genomic combination of the hybrid or the allopolyploid. It was not affected by the genotype of the parental plants, by their cytoplasm, or by the ploidy level, and it did not result from intergenomic recombination. Allopolyploidy-induced sequence elimination occurred in a sizable fraction of the genome and in sequences that were apparently noncoding. This finding suggests a role in augmenting the differentiation of homoeologous chromosomes at the polyploid level, thereby providing the physical basis for the diploid-like meiotic behavior of newly formed allopolyploids. In our view, this rapid genome adjustment may have contributed to the successful establishment of newly formed allopolyploids as new species.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号