首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
中国热带静风区林缘水平热力特征的初步分析   总被引:7,自引:0,他引:7  
利用我国热静风区-西双版纳橡胶林西南向边缘1月的温度观测资料,探讨了昼间林缘区域热力特征及时空变化规律,结果表明,在林缘存在着明显的热力效应;对地面温度的影响深度可至林内约13m处,地面温度在林处4.5m处达最高,气温则在林缘(0m)出现最大;林缘附近热量的输送在数值和方向上存在较大差异,即林外热量从地面向空中输送;林内在午后与林外相反,热量由上(林冠)向下(地面)输送;林缘附近则在不同地点、不同  相似文献   

2.
西双版纳热带雨林片断小气候边缘效应的初步研究   总被引:37,自引:0,他引:37       下载免费PDF全文
本文以林缘为中心,研究了西双版纳地区3个热带干性季节性雨林片断和1个同样植被类型的连续森林林内至林外样带上小气候要素水平梯度分布。结果表明,热带雨林片断林缘对温度、相对湿度和光照的影响范围北向林缘伸至林内15m、南向林缘伸至林内25m。林外小气候水平梯度大于林内,这种梯度变异尤以林缘附近(-10~10m范围)最大。热带雨林片断后,林内与林外之间的小气候环境差异和对林外气候变化的缓冲作用都明显减弱。本文还给出了温度和湿度随水平距离变化的线性关系,并探讨了小气候边缘效应对群落结构、物种分布的影响。  相似文献   

3.
由于砍伐、林火等形成的林缘是典型的生态过渡区,并以高生物多样性和快速变化的光环境为最显著特征。研究植物在林缘附近不同光环境下对光能和水分的利用特征有利于在个体层次揭示林木更新、森林群落动态的生理生态学基础,具有重要意义。蒙古栎是长白山地区落叶阔叶林及阔叶红松林中的常见阳性树种。通过对长白山白桦林林缘及附近蒙古栎的野外观测研究,结果表明:①林冠对林缘光照等的影响随距离林缘远近的不同而不同。林缘及附近区域的光环境存在巨大差异,温度和水分条件等也有显著变化。②蒙古栎光合的日进程为单峰型,净光合速率的高峰值达20μmolCO2·m-2·s-1,未见明显午休;林外蒙古栎的净光合速率及日光合总量均大于(或远大于)林缘和林内的净光合速率及日光合总量,表明蒙古栎在林外强光下生长最快;此外,对低光的高效利用显示蒙古栎可在林内低光环境正常生长。③蒙古栎在不同光环境下蒸腾速率的日进程为单峰型,林外最高可达近8mmolH2O·m-2·s-1。虽然蒙古栎在林外的蒸腾速率、日蒸腾量及水分利用率均较高,但与林内弱光环境相比,水分利用率增加的趋势略有降低,这是蒙古栎对林外强光环境的一种适应。④蒙古栎叶片的气孔导度随光照的增加而增大,这有利于植物在强光下增加净光合速率和蒸腾速率,有利于植物在强光下快速生长。另外,蒙古栎的叶片胞间CO2浓度从早至晚呈增加趋势;随日PAR总量的增加,蒙古栎的叶片胞间CO2浓度呈降低趋势。弱光环境下胞间CO2浓度的增加,有利于植物固定CO2、增加对光能和水分的利用效率。  相似文献   

4.
为研究人工林群落的边缘效应特征, 本文以川西周公山森林公园的柳杉(Cryptomeria fortunei)人工林破碎化大斑块为对象, 以植株平均胸径、平均高度、平均密度、丰富度指数(D)和Shannon-Wiener指数(H)来综合衡量边缘效应深度。在实地踏查的基础上, 从林缘向林内(梯度1至梯度5)设置5条样带(宽度为10 m), 在每条样带中设置4个10 m × 10 m的小样方进行调查。结果表明: (1)从物种组成上看, 在总面积为2,000 m2的20个小样方中共记录到111个物种, 隶属于54科96属, 物种数从林缘至林内递减。(2)从群落结构上看, 乔木层的平均胸径从林缘至林内呈减小趋势, 平均密度则相反, 平均高度无显著变化; 灌木层的平均密度从林缘向林内减小, 平均高度无显著变化; 草本层的平均密度和平均高度均呈减小趋势。(3)从物种多样性上看, 总体上各层次的丰富度指数和Shannon-Wiener指数均从林缘向林内呈减小趋势, 其中灌木层和草本层的变化趋势最明显; 同时, 林内各梯度与梯度1 (林缘)的共有种和相似性系数从林缘向林内递减。(4)分析各项群落特征发现, 平均高度、平均密度和相似性系数的数值在梯度2向梯度3过渡时的起伏变化最明显, 推断本研究中柳杉人工林斑块的边缘深度可达林内20 m。  相似文献   

5.
张凯旋  张建华 《生态学报》2013,33(13):4189-4198
选取上海环城林带典型的植物群落,分别在夏季和冬季对群落的温湿度调节、负离子提升、抑菌、降噪和大气净化等保健功能进行测定和评价;同时结合群落结构因子,分析群落结构与保健功能之间的关系,并探讨了群落物种组成和结构特征对保健功能的影响,以期揭示群落保健功能发挥的机制.结果表明:夏季,落叶针叶林池杉群落除抑菌功能以外,在其他保健功能上均具有较好的效果,而落叶阔叶林全缘叶栾树群落和悬铃木群落效果较差,其他类型的群落居中;冬季,常绿阔叶林女贞群落在各种保健功能方面均具有较好的效果,其次为常绿落叶阔叶混交林的全缘叶栾树+香樟群落和杂交杨+香樟群落,其他类型的群落效果较差.群落各种保健功能与群落结构特征的相关性分析表明,叶面积指数和郁闭度在夏冬两季均与多种保健功能呈显著正相关,是指示群落保健功能优劣的重要结构因子.研究结果表明人工森林群落的保健功能可通过调整群落结构来提升,为城市森林的群落建构与管理提供了科学依据.  相似文献   

6.
亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性   总被引:8,自引:0,他引:8  
陶建平  宋利霞 《生态学报》2006,26(12):4019-4026
以亚高山暗针叶林3种林冠环境中以及暗针叶林林缘的华西箭竹(Fargesia nitida)为对象,对其无性系数量特征、无性系根茎特征、分株生物量以及分株形态特征进行了对比研究。结果表明:(1)林冠环境的差异导致了不同种群的基株密度和每基株分株数的显著差异,但林冠环境差异不影响分株密度。林冠郁闭度愈大,每基株分株数愈少,分株分布愈均匀。(2)不同林冠环境间。分株生物量、分株构件生物量和分株构件的生物量分配百分率均有显著差异。开敞的林冠环境有利于华西箭竹的生长和生物量积累。(3)随着林冠郁闭度的增加,华西箭竹通过增大分枝角度、叶生物量分配百分率、比叶面积和叶面积率以提高光能利用效率,有效适应弱光环境。(4)隔离者长度、隔离者直径和分枝强度在林缘和林窗环境中要显著大于林内环境;同级隔离者分枝角度随林冠郁闭度的增加而最大,其值在林下显著大于林窗和林缘,而异级隔离者分枝角度的变化则正好相反。研究表明,华西箭竹种群在不同的林冠环境中发生了明显的可塑性变化,这些可塑性变化是种群对林冠郁闭度差异的适应性反应的结果,有利于增强种群对环境中有限光资源的利用。  相似文献   

7.
安徽省九华山风景区古树群落景观美学评价   总被引:7,自引:0,他引:7  
以九华山风景区古树名木群落为研究对象,收集了26个有代表性古树群落和45个对比林分的景观图片和样地资料,采用美景度评判法获得美景度值.利用语义差别法对古树群落的景观要素进行量化,并运用多元线性回归建立美景度值与景观要素的模型.结果表明:古树群落美景度值显著高于其他对比林分;受测者对景区内古树群落树木排列、光感、树木大小变异等景观要素反应值较高;树木形态、色彩丰富度、树木排列、林下层统一度、层次感、自然整枝、乔木层枝叶统一度是影响古树群落景观质量的主要要素,F检验表明,通过这些景观要素建立的模型是合理可行的.  相似文献   

8.
基于无人机航拍摄影技术,结合植物现状调查和问卷调查,应用美景度评判法对华南农业大学八类植物景观进行评价。结果表明,基于无人机的航拍影像,华南农业大学植物群落复层结构清晰可见,空间布局层次丰富,植物景观质量整体水平良好;植物色彩丰富度和植物多样性与美景度值有显著相关性,是影响校园植物景观美景度值的有效影响因子。  相似文献   

9.
为了解澳门大潭山垃圾填埋场的景观恢复情况,采用样方法调查分析了群落的种类组成、垂直结构、区系成分、群落外貌等特征,并对景观恢复进行了评价。结果表明,在1200 m2样地中共有维管植物83种,区系成分以泛热带分布属占优势(38.98%),群落外貌主要由草质、单叶和小型叶的小、中高位芽植物所决定。植物群落现状的各指标与自然群落相似,说明自然恢复良好。同时,提出了垃圾填埋场景观恢复的优选物种和改造建议。建议对垃圾填埋场的景观恢复应分期进行,在不同的演替阶段进行适当的人工干预,以加速景观恢复并获得更好的景观效果。  相似文献   

10.
采用美景度评价法(SBE法)对广东省生态景观林带进行评价,分析影响生态景观林带景观水平的主要因子,探讨生态景观林带景观构成要素与景观质量的关系。结果表明,不同专业、性别、学历、年龄的人群在森林审美态度上具有一致性,其评判结果能够反映森林美景度的实际情况;对53张照片评价SBE值,最大为1.4454,最小为-1.6917;对美景度影响较大的4个因子,即色彩丰富度(X6)、色泽明度(X7)、生活型(X8)、生长状况(X9),建立的多元线性回归模型是 Y=1.902-0.346X6-0.461X7+ 0.206X8-0.584X9。  相似文献   

11.
Reclaimed landscapes after oil sands mining have saline soils; yet, they are required to have similar biodiversity and productivity as the predisturbance nonsaline landscape. Given that many species in the boreal forest are not tolerant of salinity, we studied the effects of soil salinity on plant communities in natural saline landscapes to understand potential plant responses during the reclamation process. Vegetation–soil relationships were measured along transects from flooded wetlands to upland forest vegetation in strongly saline, slightly saline, nonsaline, and reclaimed boreal landscapes. In strongly saline landscapes, surface soil salinity was high (>10 dS/m) in flooded, wet‐meadow, and dry‐meadow vegetation zones as compared to slightly saline (<5 dS/m) and nonsaline (<2 dS/m) landscapes. Plant communities in these vegetation zones were quite different from nonsaline boreal landscapes and were dominated by halophytes common to saline habitats of the Great Plains. In the shrub and forest vegetation zones, surface soil salinity was similar between saline and nonsaline landscapes, resulting in similar plant communities. In strongly saline landscapes, soils remained saline at depth through the shrub and forest vegetation zones (>10 dS/m), suggesting that forest vegetation can establish over saline soils as long as the salts are below the rooting zone. The reclaimed landscape was intermediate between slightly saline and nonsaline landscapes in terms of soil salinity but more similar to nonsaline habitats with respect to species composition. Results from this study suggest it may be unrealistic to expect that plant communities similar to those found on the predisturbance landscape can be established on all reclaimed landscapes after oil sands mining.  相似文献   

12.
Rivers represent natural edges in forests, serving as transition zones between landscapes. Natural edge effects are important to study to understand how intrinsic habitat variations affect wildlife as well as the impact of human-induced forest fragmentation. We examined the influence of riparian and anthropogenic edge on mantled howler, white-faced capuchin, Central American spider monkeys, and vegetation structure at La Suerte Biological Research Station (abbreviated as LSBRS), Costa Rica. We predicted lower monkey encounter rate, tree species richness, and median dbh at both edge types compared to interior and that monkeys would show species-specific responses to edge based on size and diet. We expected large, folivorous–frugivorous howler monkeys and small, generalist capuchins would be found at increased density in forest edge, while large, frugivorous spider monkeys would be found at decreased density in forest edge. We conducted population and vegetation surveys along interior, riparian, and anthropogenic edge transects at LSBRS and used GLMM to compare vegetation and monkey encounter rate. Tree species richness and median dbh were higher in forest interior than anthropogenic edge zones. Although spider monkey encounter rate did not vary between forest edges and interior, howler monkeys were encountered at highest density in riparian edge, while capuchins were encountered at highest density in anthropogenic edge. Our results indicate that diverse forest edges have varying effects on biota. Vegetation was negatively affected by forest edges, while monkey species showed species-specific edge preferences. Our findings suggest that riparian zones should be prioritized for conservation in Neotropical forests.  相似文献   

13.
The increasing rate of urban sprawl continues to fragment European landscapes threatening the persistence of native woodland plant communities. The dynamics of woodland edges depend on the characteristics of woodland patches and also on landscape context. Our aim was to assess the extent of edge influences on the understorey vegetation of small native woodlands in rural and urban landscapes. The study was carried out in two cities of north-western France. Ten comparable woodlands, each of about 1.5 ha, were surveyed; five were situated adjacent to crops and five adjacent to built-up land. Vascular plant species were recorded in 420 3 × 3 m plots placed at seven different distances from the edge (from 0 to about 45 m from the edge). Soil pH, light levels, level of disturbance and tree and shrub cover were also recorded. Plant species were first classified as non-indigenous or indigenous and then three groups of indigenous species were distinguished according to their affinity for forest habitat (forest specialists, forest generalists and non-forest species). We inferred certain ecological characteristics of understorey vegetation by using Ellenberg values. An inter-class correspondence analysis was carried out to detect patterns of variation in plant community composition. Linear mixed models were used to test the effects of adjacent land use, distance from the edge and their interactions on the species richness of the different groups and on the ecological characteristics of vegetation. Total species richness, richness of forest generalists and of non-forest species decreased from edge to interior in both urban and rural woodlands. The number of non-indigenous species depended mainly on urban–rural landscape context. Urban woodland edges were not as rich in forest specialists as rural edges. More surprisingly, the number of forest specialists was higher in rural edges than in rural interiors. Community composition was mainly affected by urban–rural context and to a lesser degree by the edge effect: the community composition of urban edges resembled that of urban interiors whereas in rural woodlands vegetation near edges (up to 10 m) strongly differed from interiors with a pool of species specific to edges. Urban woodland vegetation was more nitrophilous than rural vegetation in both edges and interiors. A major difference between urban and rural vegetation was the distribution of basiphilous species according to distance from the edge. Generally edge vegetation was more basiphilous than interior vegetation however the presence of basiphilous species fell off quickly with distance from the edge in rural woodlands (in the first 10–15 m) and more slowly (from 25 m onwards) in urban woodlands. This pattern was linked to variation in measured soil pH. As regards the conservation of flora in small native woodlands, it appeared that invasion of exotic and non-forest species was currently limited in both urban and rural landscape contexts but might pose problems in the future, especially in urban woodlands. Forest species were not negatively affected by the edge effect and indeed edges seemed to provide important habitats for this group. Hence conservationists should pay particular attention to the protection of edges in urban woodlands.  相似文献   

14.
Fragmentation of Continental United States Forests   总被引:11,自引:1,他引:10  
We report a multiple-scale analysis of forest fragmentation based on 30-m (0.09 ha pixel−1) land-cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indexes measured within the surrounding landscape, for five landscape sizes including 2.25, 7.29, 65.61, 590.49, and 5314.41 ha. Most forest is found in fragmented landscapes. With 65.61-ha landscapes, for example, only 9.9% of all forest was contained in a fully forested landscape, and only 46.9% was in a landscape that was more than 90% forested. Overall, 43.5% of forest was located within 90 m of forest edge and 61.8% of forest was located within 150 m of forest edge. Nevertheless, where forest existed, it was usually dominant—at least 72.9% of all forest was in landscapes that were at least 60% forested for all landscape sizes. Small (less than 7.29 ha) perforations in otherwise continuous forest cover accounted for about half of the fragmentation. These results suggest that forests are connected over large regions, but fragmentation is so pervasive that edge effects potentially influence ecological processes on most forested lands. Received 22 October 2001; accepted 30 April 2002.  相似文献   

15.
Rain Forest Structure at Forest-Pasture Edges in Northeastern Costa Rica   总被引:2,自引:1,他引:1  
Land-use change in the Sarapiquí region of Costa Rica has resulted in a fragmented forest landscape with abrupt edges between forest and pasture. Forest responses to edge effects vary widely and can significantly affect ecosystem integrity. Our objective was to examine forest structure at 20+ yr old forest-pasture edges in Sarapiquí. Three transects with 0.095-ha plots at seven distances from forest edges were established in each of six forest patches. Stem density, basal area, and aboveground biomass in trees and palms ≥ 10-cm diameter at breast height were measured in all plots. In addition, hemispherical photographs were taken to determine leaf area index, understory light availability, and percent canopy openness. Linear mixed-effects models showed significantly higher tree stem density at forest edges, relative to interiors, a pattern reflected by increased stem density, basal area, and aboveground biomass in small diameter trees (≤ 20 cm) growing near edges. No differences in total tree basal area, aboveground biomass, or hemispherical photograph-derived parameters were detected across the forest edge to interior gradient. The recruitment of small diameter trees following edge creation has contributed to the development of dense vegetation at the forest edge and has aided in the maintenance of similar tree basal area and aboveground biomass between edge and interior environments. These data reflect on the robustness of forest edges in Sarapiquí, a characteristic that will likely minimize future detrimental edge effects and promote a number of high-value environmental services in these forests.  相似文献   

16.
Fragmentation changes the spatial patterns of landscapes in ways that can alter the flow of materials and species; however, our understanding of the consequences of this fragmentation and flow alteration for ecosystem processes and ecosystem services remains limited. As an ecological process that affects many ecosystem services and is sensitive to fragmentation, insect herbivory is a good model system for exploring the role of fragmentation, and the resulting spatial patterns of landscapes, in the provision of ecosystem services. To refine our knowledge of how changes in landscape pattern affect insect herbivory, we quantified the combined influence of among patch (patch area and patch connectivity) and within patch (location within patch; canopy, edge, interior) factors on amounts of insect herbivory in a fragmented forest landscape. We measured herbivory in 20 forest patches of differing size and connectivity in southern Quebec (Canada). Within each patch, herbivory was quantified at the interior, edge, and canopy of sugar maple trees during the spring and summer of 2011 and 2012. Results show that connectivity affects herbivory differently depending on the location within the patch (edge, interior, canopy), an effect that would have gone unnoticed if samples were pooled across locations. These results suggest considering structure at both the patch and within patch scales may help to elucidate patterns when studying the effects of fragmentation on ecosystem processes, with implications for the services they support.  相似文献   

17.
Researchers studying forest edge effects in fragmented landscapes have begun to move beyond merely documenting changes along the edge itself to examining the dynamic influences that edges may have on processes in adjacent areas. One such "edge-mediated effect" is the influence that edges may have on canopy gap replacement processes within the forest interior by acting as seed sources for shade-intolerant plant species. In this paper, we coupled analyses of woody species composition in gap and non-gap areas within the interior of an Ohio hardwood forest with a simple cellular automata model of forest dynamics. Non-gap composition was primarily correlated with disturbance history and site conditions (topographic position and slope) while a comparable analysis using a 24-year time series of composition in gaps showed that gap composition was related most strongly to the proximity of edge communities for the first 10–15 years. However, after 15–20 years of gap succession, composition was correlated with essentially the same variables and to the same degree as non-gap vegetation, suggesting that the influence of edge proximity on interior stand dynamic processes was transient. These results were used to develop a simple mathematical model of stand dynamics that showed that losses of interior forest area may be much greater than typically predicted by core-area models, which do not consider dynamic, edge-mediated effects. Further, our findings suggest the importance of considering disturbance interval in mediating edge-interior relationships, particularly as it may interact with forest size and shape.  相似文献   

18.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号