首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The behavior and differentiation processes of pigment cells were studied in embryos of a tropical sea urchin Echinometra mathaei, whose egg volume was one half of those of well-known sea urchin species. Owing to earlier accumulation of pigments, pigment cells could be detected in the vegetal plate even before the onset of gastrulation, distributed dorsally in a hemi-circle near the center of the vegetal plate. Although some pigment cells left the archenteron during gastrulation, most of them remained at the archenteron tip. At the end of gastrulation, pigment cells left the archenteron and migrated into the blastocoele. Unlike pigment cells in typical sea urchins, however, they did not enter the ectoderm, and stayed in the blastocoele even at the pluteus stage. It is of interest that the majority of pigment cells were distributed in the vicinity of the larval skeleton. Aphidicolin treatment revealed that eight blastomeres were specific to pigment cell lineage after the eighth cleavage, one cell cycle earlier than that in well-known sea urchins. The pigment founder cells divided twice, and the number of pigment cells was around 32 at the pluteus stage. It was also found that the differentiation of pigment cells was blocked with Ni2+, whereas the treatment was effective only during the first division cycle of the founder cells.  相似文献   

2.
The behavior of pigment cells in sea urchin embryos, especially at the gastrula stage, is not well understood, due to the lack of an appropriate method to detect pigment cells. We found that pigment cells emanated autofluorescence when they were fixed with formalin and irradiated with ultraviolet or green light. In Hemicentrotus pulcherrimus, fluorescent pigment cells became visible at the archenteron tip at the mid-gastrula stage. The cells detached from the archenteron slightly before the initiation of secondary invagination and migrated toward the apical plate. Most pigment cells entered the apical plate. This entry site seemed to be restricted, because pigment cells could not enter the ectoderm and remained in the blastocoele at the vegetal pole side when elongation of archenteron was blocked. Pigment cells that had entered the apical plate soon began to migrate in the aboral ectoderm toward the vegetal pole. In contrast, pigment cells of Scaphechinus mirabilis embryos were first detected in the vegetal plate before the onset of gastrulation. Without entering the blastocoele, these cells began to migrate preferentially in the aboral ectoderm toward the animal pole. When the archenteron tip reached the apical plate, pigment cells had already distributed throughout the aboral ectoderm. Thus, the behavior of pigment cells was quite different between H. pulcherrimus and S. mirabilis.  相似文献   

3.
Takata H  Kominami T 《Zoological science》2004,21(10):1025-1035
To know whether behavior of pigment cells correlates the process of gastrulation or not, gastrulating embryos of several species of regular echinoids (Anthocidaris crassispina, Mespilia globulus and Toxopneustes pileolus) and irregular echinoids (Clypeaster japonicus and Astriclypeus manni) were examined. In M. globulus and A. crassispina, the archenteron elongated stepwise like in well-known sea urchins. In the embryos of both species, fluorescent pigment cells left the archenteron tip and migrated into the blastocoel during gastrulation. In T. pileolus, C. japonicus and A. manni, on the other hand, the archenteron elongated at a constant rate throughout gastrulation. In these species, no pigment cell was observed at the archenteron tip during invagination processes; pigment cells began to migrate in the ectoderm from the vegetal pole side toward the apical plate without entering the blastocoel. These results clearly indicate that the behavior of pigment cells closely correlated the manner of gastrulation. Further, it was examined whether the archenteron cells are rearranged during invagination, by comparing the number of cells observed on cross sections of the archenteron at the early and late gastrula stages. The rearrangement was not conspicuous in A. crassispina and M. globulus, in which archenteron elongated stepwise. In contrast, the archenteron cells were remarkably rearranged in C. japonicus, alothough the archenteron elongated continuously. Thus, neither the behavior of pigment cells nor the manner of gastrulation matches the current taxonomic classification of echinoids.  相似文献   

4.
Although sea urchin gastrulation is well described at the cellular level, our understanding of the molecular changes that trigger the coordinated cell movements involved is not complete. Jun N‐terminal kinase (JNK) is a component of the planar cell polarity pathway and is required for cell movements during embryonic development in several animal species. To study the role of JNK in sea urchin gastrulation, embryos were treated with JNK inhibitor SP600125 just prior to gastrulation. The inhibitor had a limited and specific effect, blocking invagination of the archenteron. Embryos treated with 2 μM SP600125 formed normal vegetal plates, but did not undergo invagination to form an archenteron. Other types of cell movements, specifically ingression of the skeletogenic mesenchyme, were not affected, although the development and pattern of the skeleton was abnormal in treated embryos. Pigment cells, derived from nonskeletogenic mesenchyme, were also present in SP600125‐treated embryos. Despite the lack of a visible archenteron in treated embryos, cells at the original vegetal plate expressed several molecular markers for endoderm differentiation. These results demonstrate that JNK activity is required for invagination of the archenteron but not its differentiation, indicating that in this case, morphogenesis and differentiation are under separate regulation. genesis 53:762–769, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
During gastrulation of the sea urchin, Lytechinus variegutus there is localized proliferation of cells in the vegetal plate region prior to its invagination. Cell counts show that during gastrulation the number of cells per embryo increases 60% from 1025 to 1640. Measurements of cell volumes suggest that some growth may follow these divisions. Feulgen staining shows that the greatest mitotic activity throughout gastrulation occurs in the vegetal plate region. Labelling embryos with 3H-thymidine reveals that incorporation in the vegetal plate is confined to cells that encircle the base of the archenteron. Pulse-chase experiments indicate that these labelled cells contribute descendants to the vegetal half of the archenteron. Additionally, 3-dimensional reconstructions of vegetal regions at different stages reveal that by the end of gastrulation two bilateral clusters of labelled cells lie at the future sites of the post-oral arms of the pluteus larva, thus marking the axes of bilateral and dorso-ventral symmetry. Our findings suggest that two of the principal events of sea urchin gastrulation — the formation of the archenteron and the establishment of symmetry in the larva — are accompanied by distinct patterns of cell division.  相似文献   

6.
Processes of gastrulation in the sand dollar Scaphechinus mirabilis were compared with those in the sea urchin Hemicentrotus pulcherrimus , which seemed to show a typical pattern of gastrulation. Measurement of the archenteron length clearly demonstrated that invagination processes in H. pulcherrimus are divided into two phases, the primary and secondary invagination. On the other hand, invagination in S. mirabilis was revealed to continue at a constant rate. To see the movement of cells during gastrulation, embryos were labeled with Nile blue. In H. pulcherrimus embryos, labeled cells were observed along the full length of the archenteron, if the embryos had been labeled before and during the primary invagination. Labeled cells were never observed in the embryos stained after the primary invagination. In contrast, labeled cells were always discerned at the basal part of the archenteron in S. mirabilis , even if the embryos were stained after invagination had undergone considerable progress. The number of cells in the archenteron of S. mirabilis embryos increased with the advancement of gastrulation, while the numbers were almost constant in H. pulcherrimus . These results suggest that the cellular basis of gastrulation in S. mirabilis is quite different from that in well-known species of sea urchins.  相似文献   

7.
In the tropical sea urchin Echinometra mathaei, pigment cells are just detectable before the onset of gastrulation, owing to an early accumulation of red pigment granules. Taking advantage of this feature, behavior of pigment cells was studied in relation to the processes of gastrulation. Before the initiation of primary invagination, pigment cells were arranged in a hemi-circle in the dorsal half of the vegetal plate. Inward bending of the vegetal plate first occurred at the position occupied by pigment cells, while the bending was not conspicuous in the ventral half of the blastopore. Rhodamine-phalloidin staining showed that actin filaments were abundant at the apical corticies of pigment cells. It was also found that the onset of gastrulation was considerably delayed in the NiCl2-treated embryos, in which pigment cells were drastically reduced in number. It is notable that the NiCl2-treated embryos began to gastrulate on schedule if they contained a number of pigment cells in spite of treatment. This shows that pigment cells are the bottle cells that trigger the onset of gastrulation. In the embryos devoid of pigment cells, a short stub-like gut rudiment formed in a delayed fashion, and several secondary mesenchyme cells (SMC) appeared at the tip of the rudiment and elongated gradually until its tip reached the apical plate. This observation suggests that the SMC that pull the gut rudiment upward are not pigment cells but blastocoelar cells, because pigment cells change their fate to blastocoelar cells upon NiCl2-treatment.  相似文献   

8.
9.
To learn how the dorso-ventral (DV) axis of sea urchin embryos affects the specification processes of secondary mesenchyme cells (SMC), a fluorescent dye was injected into one of the macromeres of 16-cell stage embryos, and the number of each type of labeled SMC was examined at the prism stage. A large number of labeled pigment cells was observed in embryos in which the progeny of the labeled macromere were distributed in the dorsal part of the embryo. In contrast, labeled pigment cells were scarcely noticed when the descendants of the labeled macromere occupied the ventral part. In such embryos, free mesenchyme cells (probably blastocoelar cells) were predominantly labeled. CH3COONa treatment, which is known to increase the number of pigment cells, canceled such patterned specification of pigment cells and blastocoelar cells along the DV axis. Pigment cells were also derived from the ventral blastomere in the treated embryo. In contrast, a similar number of coelomic pouch cells was derived from the labeled macromere, irrespective of the position of its descendants along the DV axis. After examination of the arrangement of blastomeres in late cleavage stage embryos, it was determined that 17-20 veg2-derived cells encircled the cluster of micromere descendants after the 9th cleavage. From this number and the numbers of SMC-derived cells in later stage embryos, it was suggested that the most vegetally positioned veg2 descendants at approximately the 9th cleavage were preferentially specified to pigment and blastocoelar cell lineages. The obtained results also suggested the existence of undescribed types of SMC scattered in the blastocoele.  相似文献   

10.
During gastrulation, the archenteron is formed using cell shape changes, cell rearrangements, filopodial extensions, and convergent extension movements to elongate and shape the nascent gut tube. How these events are coordinated remains unknown, although much has been learned from careful morphological examinations and molecular perturbations. This study reports that RhoA is necessary to trigger archenteron invagination in the sea urchin embryo. Inhibition of RhoA results in a failure to initiate invagination movements, while constitutively active RhoA induces precocious invagination of the archenteron, complete with the actin rearrangements and extracellular matrix secretions that normally accompany the onset of invagination. Although RhoA activity has been reported to control convergent extension movements in vertebrate embryos, experiments herein show that RhoA activity does not regulate convergent extension movements during sea urchin gastrulation. Instead, the results support the hypothesis that RhoA serves as a trigger to initiate invagination, and once initiation occurs, RhoA activity is no longer involved in subsequent gastrulation movements.  相似文献   

11.
Earlier studies using colchicine (L. G. Tilney and J. R. Gibbins, 1969, J. Cell Sci. 5, 195-210) had suggested that intact microtubules (MTs) are necessary for archenteron elongation during the second phase of sea urchin gastrulation (secondary invagination), presumably by allowing secondary mesenchyme cells (SMCs) to extend their long filopodial processes. In light of subsequently discovered effects of colchicine on other cellular processes, the role of MTs in archenteron elongation in the sea urchin, Lytechinus pictus, has been reexamined. Immunofluorescent staining of ectodermal fragments and isolated archenterons reveals a characteristic pattern of MTs in the ectoderm and endoderm during gastrulation. Ectodermal cells exhibit arrays of MTs radiating away from the region of the basal body/ciliary rootlet and extending along the periphery of the cell, whereas endodermal cells exhibit a similar array of peripheral MTs emanating from the region of the apical ciliary rootlet facing the lumen of the archenteron. MTs are found primarily at the bases of the filopodia of normal SMCs. beta-Lumicolchicine (0.1 mM), an analog of colchicine which does not bind tubulin, inhibits secondary invagination, indicating that the effects previously ascribed to the disruption of MTs are probably due to the effects of colchicine on other cellular processes. The MT inhibitor nocodazole (5-10 micrograms/ml) added prior to secondary invagination does not prevent gastrulation or spontaneous exogastrulation, even though indirect immunofluorescence indicates that cytoplasmic MTs are completely disrupted in drug-treated embryos. Transverse tissue sections indicate that a comparable amount of cell rearrangement occurs in nocodazole-treated and control embryos. Significantly, SMCs in nocodazole-treated embryos often detach prematurely from the tip of the gut rudiment and extend abnormally large broad lamellipodial protrusions but are also capable of extending long slender filopodia comparable in length to those of control embryos. These results indicate that cytoplasmic MTs are not essential for either filopodial extension by SMCs or for the active epithelial cell rearrangement which accompanies elongation during sea urchin gastrulation.  相似文献   

12.
In gastrulating sea urchin embryos, secondary mesenchyme cells at the tip of the advancing archenteron extend long narrow filopodia which probe the inner surface of the blastocoele wall, rejecting some surface contacts before adhering to other cells. After specific cell adhesions are made, contractions of the filopodia pull the leading tip of the archenteron to the opposite wall of the blastocoele with an accompanying elongation of the archenteron. A study was made of the biochemistry and morphology of the specific adhesions of filopodial extensions by injecting a variety of compounds into the blastocoele of living sea urchin gastrulae and observing their effects on filopodia and cell movements. A number of agents (proteases, lectins) caused specific filopodial detachment and subsequent archenteron regression. Fluorescein-conjugated lectins, including concanavalin A (conA) and wheat germ agglutinin (WGA) exhibited marked specificity of cell surface binding to specific regions (primary mesenchyme cells, blastocoele wall, etc.) of the embryo.  相似文献   

13.
The entry of beta-catenin into vegetal cell nuclei beginning at the 16-cell stage is one of the earliest known molecular asymmetries seen along the animal-vegetal axis in the sea urchin embryo. Nuclear beta-catenin activates a vegetal signaling cascade that mediates micromere specification and specification of the endomesoderm in the remaining cells of the vegetal half of the embryo. Only a few potential target genes of nuclear beta-catenin have been functionally analyzed in the sea urchin embryo. Here, we show that SpWnt8, a Wnt8 homolog from Strongylocentrotus purpuratus, is zygotically activated specifically in 16-cell-stage micromeres in a nuclear beta-catenin-dependent manner, and its expression remains restricted to the micromeres until the 60-cell stage. At the late 60-cell stage nuclear beta-catenin-dependent SpWnt8 expression expands to the veg2 cell tier. SpWnt8 is the only signaling molecule thus far identified with expression localized to the 16-60-cell stage micromeres and the veg2 tier. Overexpression of SpWnt8 by mRNA microinjection produced embryos with multiple invagination sites and showed that, consistent with its localization, SpWnt8 is a strong inducer of endoderm. Blocking SpWnt8 function using SpWnt8 morpholino antisense oligonucleotides produced embryos that formed micromeres that could transmit the early endomesoderm-inducing signal, but these cells failed to differentiate as primary mesenchyme cells. SpWnt8-morpholino embryos also did not form endoderm, or secondary mesenchyme-derived pigment and muscle cells, indicating a role for SpWnt8 in gastrulation and in the differentiation of endomesodermal lineages. These results establish SpWnt8 as a critical component of the endomesoderm regulatory network in the sea urchin embryo.  相似文献   

14.
Aphidicolin, an inhibitor of DNA polymerase α, arrests DNA synthesis without affecting RNA and protein synthesis at all stages of sea urchin development. Cleavage is quickly stopped and hatching is prevented by the presence of the drug at 2 μg/ml. Treatment with aphidicolin of young blastulae prevents gastrulation, but inhibition of archenteron invagination and skeleton formation is incomplete when the drug is added to late blastulae or early gastrulae. The role of cell division in gastrulation is discussed.  相似文献   

15.
Laminin is present on the apical and basolateral sides of epithelial cells of very early sea urchin blastulae. We investigated whether small laminin-peptides, known to have cell binding activities, alter the development of sea urchin embryos. The peptide YIGSR-NH2 (850 μM) and the peptide PA22-2 (5 μM), which contains the peptide sequence IKVAV (Tashiro et al., J. Biol. Chem. 264, 16174, 1989), typically blocked archenteron formation when added to the sea water soon after fertilization. At lower doses, the YIGSR peptide allowed invagination of the archenteron but blocked archenteron extension and differentiation and evagination of the feeding arms. The effect of YIGSR and PA22-2 peptides declined when added to progressively older stages until no effect was seen when added at the mesenchyme blastula stage (24 hours after fertilization). Control peptides GRGDS, YIGSE, and SHA22, a dodeca-peptide with a scrambled IKVAV sequence, had no effect on development. The YIGSK peptide containing a conserved amino acid modification had only a small effect on gastrulation. The results suggest that YIGSR and IKVAV peptides specifically disrupt cell/extracellular matrix interactions required for normal development of the archenteron and feeding arms. Our recent finding that YTGIR is at the cell binding site of the B1 chain of S. purpuratus laminin supports this conclusion. Evidently, laminin or other laminin-like molecules are among the many extracellular matrix components needed for the invagination and extension of the archenteron during the gastrulation movements of these embryos.  相似文献   

16.
How the ectodermal layer relates to the invagination processes was examined in the sand dollar Scaphechinus mirabilis. When the turgor pressure of blastocoele was increased, invagination was completely blocked. In contrast, an increase in turgor pressure did not affect elongation of the gut rudiment in the regular echinoid Hemicentrotus pulcherrimus. Rhodamine-phalloidin staining showed that the distribution of actin filaments was different between two species of embryos. In S. mirabilis gastrulating embryos, abundant actin filaments were seen at the basal cortex of ectoderm in addition to archenteron cells, while the intense signal was restricted to the archenteron in H. pulcherrimus. To investigate whether actin filaments contained in the ectodermal layer exert the force of invagination, a small part of the ectodermal layer was aspirated with a micropipette. If S. mirabilis embryos were aspirated from the onset of gastrulation, invagination did not occur at all, irrespective of the suction site. Even after the archenteron had invaginated to one-half of its full length, further elongation of the archenteron was severely blocked by suction of the lateral ectoderm. In contrast, suction of the ectodermal layer did not affect the elongation processes in H. pulcherrimus. These results strongly suggest that the ectodermal layer, especially in the vegetal half, exerts the driving force of invagination in S. mirabilis.  相似文献   

17.
Two different modes of gastrulation in sea urchin embryos have been reported. The first mode, reported in Hemicentrotus pulcherrimus and some other species, consists of two phases: a primary and a secondary invagination. The second mode involves gastrulation with a continuous convolution of cells near the blastopore; this mode has been reported to occur in the embryos of the sand dollar, Scaphechinus mirabilis. The rudimentary gut is comprised of fewer cells in the embryos of the former species than in the latter. We assumed that the differences in gastrulation modes could be related to the different potentials of the veg2 layer to induce endoderm differentiation in the upper layer. In the present study, we produced chimeric embryos consisting of an animal cap recombined with veg2 layer blastomere(s) to compare the inductive effect of the veg2 layer and/or the blastomere(s) in H. pulcherrimus and S. mirabilis embryos. Our results showed that the inductive effect of the veg2 layer is stronger in S. mirabilis embryos than in H. pulcherrimus embryos. Moreover, it was suggested that the difference in the strength of inductive effects of veg2 layers is related to the difference in gastrulation modes.  相似文献   

18.
Gastrulation in the maximum direct developing ascidian Molgula pacifica is highly modified compared with commonly studied "model" ascidians in that endoderm cells situated in the vegetal pole region do not undergo typical invagination and due to the absence of a typical blastopore the involution of mesoderm cells is highly modified. At the gastrula stage, embryos are comprised of a central cluster of large yolky cells that are surrounded by a single layer of ectoderm cells in which there is only a slight indication of an inward movement of cells at the vegetal pole. As a consequence, these embryos do not form an archenteron. In the present study, ultraviolet (UV) irradiation of fertilized eggs tested the possibility that cortical cytoplasmic factors are required for gastrulation, and blastomere isolation experiments tested the possibility that cell signaling beginning at the two-cell stage may be required for the development of the gastrula. Irradiation of unoriented fertilized eggs with UV light resulted in late cleavage stage embryos that failed to undergo gastrulation. When blastomeres were isolated from two-cell embryos, they developed into late cleavage stage embryos; however, they did not undergo gastrulation and subsequently develop into juveniles. These results suggest that cytoplasmic factors required for gastrulation are localized in the egg cortex, but in contrast to previously studied indirect developers, these factors are not exclusively localized in the vegetal pole region at the first stage of ooplasmic segregation. Furthermore, the inability of embryos derived from blastomeres isolated at the two-cell stage to undergo gastrulation and develop into juveniles suggests that important cell signaling begins as early as the two-cell stage in M. pacifica. These results are discussed in terms of the evolution of maximum direct development in ascidians.  相似文献   

19.
Embryos of the penaeoidean shrimp Sicyonia ingentis were examined at intervals during cleavage and gastrulation using antibodies to beta-tubulin and DNA and laser scanning confocal microscopy. Cleavage occurred in a regular pattern within four domains corresponding to the 4-cell-stage blastomeres and resulted in two interlocking bands of cells, each with similar spindle orientations, around a central blastocoel. Right-left asymmetry was evident at the 32-cell-stage, and mirror-image embryos occurred in a 50:50 ratio. Gastrulation was initiated by invagination into the blastocoel at the 62-cell-stage of two mesendoderm cells, which arrested at the 32-cell-stage. Further invagination and expansion of the archenteron during gastrulation was accompanied by rapid and oriented cell division. The archenteron was composed of presumptive naupliar mesoderm and the blastopore was located at the site of the future anus of the nauplius larva. In order to trace cell lineages and determine axial relationships, single 2- and 4-cell-stage blastomeres were microinjected with rhodamine-dextran. The results showed that the mesendoderm cells which initiated gastrulation were derived from the vegetal 2-cell-stage blastomere, which could be distinguished by its slightly larger size and the location of the polar bodies. The mesendoderm cells descended from a single vegetal blastomere of the 4-cell-stage. This investigation provides the first evidence for oriented cell division during gastrulation in a simple invertebrate system. Oriented cell division has previously been discounted as a potential morphogenetic force, and may be a common mechanism of invagination in embryos that begin gastrulation with a relatively small number of cells.  相似文献   

20.
In an attempt to estimate the number of pigment precursor cells in sea urchin embryos, DNA synthesis and cell divisions were blocked with aphidicolin from various stages of development. Interestingly, pigment cells differentiated on a normal time schedule, even if the embryos were treated from late cleavage stages on. In most of the embryos treated from 10 h on, 10-15 pigment cells differentiated. Thereafter, the number of pigment cells in the aphidicolin-treated embryos further increased, as the initiation of the treatment was delayed. On the other hand, total cell volumes in the pigment lineage, calculated from the averaged number and diameter of differentiated pigment cells, were almost the same irrespective of the time of the initiation of aphidicolin treatment. This indicated that the increase in the number was caused by divisions of the pre-existing cells in the pigment lineage. Thus, the founder cells that exclusively produce pigment cells could be identified. They are nine times-cleaved blastomeres and specified by 10 h post-fertilization. The obtained results also clarified the division schedule in the pigment lineage; the founder cells divide once (10th) until hatching, and divide once more (11th) by the end of gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号