首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study aimed to investigate the validity of using segmental bioelectrical impedance (BI) analysis for estimating skeletal muscle volume (MV) in the trunk, defined as the body segment from the acromion process to the greater trochanter. Using a magnetic resonance imaging (MRI) method, the trunk MV was determined in 28 men (19 approximately 34 yr), divided into validation (n = 20) and cross-validation (n = 8) groups, and used as a reference (MV(MRI)). For BI measurements of the trunk, the source electrodes were placed at the dorsal surface of the third metacarpal bone of both hands and the dorsal surface of the third metatarsal bone of both feet, and the detector electrodes were placed at the acromion process of both shoulders and the greater trochanter of both femurs. Using this arrangement, the BI values of five parts of the trunk, both sides of the upper region, the middle region, and both sides of the lower region, were obtained and then used to calculate the whole trunk BI value and BI index (BI index(TR)). In the validation group, a simple regression analysis of the relationship between BI index(TR) and MV(MRI) showed a significant correlation between the two variables (r = 0.884, P < 0.05) and produced a prediction equation with a SE of estimation of 1,020.3 cm3 (8.5%). In the validation and cross-validation groups, there were no significant differences between the measured and estimated MV without systematic errors. These findings indicate that the segmental BI analysis employed in the present study can be used to estimate trunk MV.  相似文献   

2.
This study provides values of anthropometric measurements and specific impedance, for a sample of 104 adults. The hypothesis that the body composition can be estimated more accurately from measurements of lengths and impedance values of the body segments than from the whole body was tested. The impedance of upper and lower extremities (arm and leg) and trunk were used to compute estimates of body composition parameters (FFM, FM, %F, TBW, ECW). The results were compared with those estimated by the impedance of the whole body. These comparisons demonstrated that significative differences resulted from body composition obtained by segmental impedance and by the whole body.  相似文献   

3.
Bracco, David, Daniel Thiébaud, René L. Chioléro, Michel Landry, Peter Burckhardt, and Yves Schutz.Segmental body composition assessed by bioelectrical impedanceanalysis and DEXA in humans. J. Appl.Physiol. 81(6): 2580-2587, 1996.The present study assessed the relative contribution of each body segment to wholebody fat-free mass (FFM) and impedance and explored the use ofsegmental bioelectrical impedance analysis to estimate segmental tissuecomposition. Multiple frequencies of whole body and segmentalimpedances were measured in 51 normal and overweight women. Segmental tissue composition was independentlyassessed by dual-energy X-ray absorptiometry. The sum ofthe segmental impedance values corresponded to the whole body value(100.5 ± 1.9% at 50 kHz). The arms and legs contributed to 47.6 and 43.0%, respectively, of whole body impedance at 50 kHz, whereas they represented only 10.6 and 34.8% of total FFM, asdetermined by dual-energy X-ray absorptiometry. The trunk averaged10.0% of total impedance but represented 48.2% of FFM. For eachsegment, there was an excellent correlation between the specificimpedance index(length2/impedance) and FFM(r = 0.55, 0.62, and 0.64 for arm,trunk, and leg, respectively). The specific resistivity was in asimilar range for the limbs (159 ± 23 cm for the arm and 193 ± 39 cm for the leg at 50 kHz) but was higher for the trunk (457 ± 71 cm). This study shows the potential interest of segmental bodycomposition by bioelectrical impedance analysis and provides specificsegmental body composition equations for use in normal and overweightwomen.

  相似文献   

4.
The present study aimed to investigate the validity of estimating muscle volume by bioelectrical impedance analysis. Bioelectrical impedance and series cross-sectional images of the forearm, upper arm, lower leg, and thigh on the right side were determined in 22 healthy young adult men using a specially designed bioelectrical impedance acquisition system and magnetic resonance imaging (MRI) method, respectively. The impedance index (L(2)/Z) for every segment, calculated as the ratio of segment length squared to the impedance, was significantly correlated to the muscle volume measured by MRI, with r = 0.902-0.976 (P < 0.05). In these relationships, the SE of estimation was 38.4 cm(3) for the forearm, 40.9 cm(3) for the upper arm, 107.2 cm(3) for the lower leg, and 362.3 cm(3) for the thigh. Moreover, isometric torque developed in elbow flexion or extension and knee flexion or extension was significantly correlated to the L(2)/Z values of the upper arm and thigh, respectively, with correlation coefficients of 0.770-0.937 (P < 0.05), which differed insignificantly from those (0.799-0.958; P < 0.05) in the corresponding relationships with the muscle volume measured by MRI of elbow flexors or extensors and knee flexors or extensors. Thus the present study indicates that bioelectrical impedance analysis may be useful to predict the muscle volume and to investigate possible relations between muscle size and strength capability in a limited segment of the upper and lower limbs.  相似文献   

5.
Discrepancies in body fluid estimates between segmental bioimpedance spectroscopy (SBIS) and gold-standard methods may be due to the use of a uniform value of tissue resistivity to compute extracellular fluid volume (ECV) and intracellular fluid volume (ICV). Discrepancies may also arise from the exclusion of fluid volumes of hands, feet, neck, and head from measurements due to electrode positions. The aim of this study was to define the specific resistivity of various body segments and to use those values for computation of ECV and ICV along with a correction for unmeasured fluid volumes. Twenty-nine maintenance hemodialysis patients (16 men) underwent body composition analysis including whole body MRI, whole body potassium (40K) content, deuterium, and sodium bromide dilution, and segmental and wrist-to-ankle bioimpedance spectroscopy, all performed on the same day before a hemodialysis. Segment-specific resistivity was determined from segmental fat-free mass (FFM; by MRI), hydration status of FFM (by deuterium and sodium bromide), tissue resistance (by SBIS), and segment length. Segmental FFM was higher and extracellular hydration of FFM was lower in men compared with women. Segment-specific resistivity values for arm, trunk, and leg all differed from the uniform resistivity used in traditional SBIS algorithms. Estimates for whole body ECV, ICV, and total body water from SBIS using segmental instead of uniform resistivity values and after adjustment for unmeasured fluid volumes of the body did not differ significantly from gold-standard measures. The uniform tissue resistivity values used in traditional SBIS algorithms result in underestimation of ECV, ICV, and total body water. Use of segmental resistivity values combined with adjustment for body volumes that are neglected by traditional SBIS technique significantly improves estimations of body fluid volume in hemodialysis patients.  相似文献   

6.
Biomechanical model assumptions affect the interpretation of the role of the muscle or joint moments to the segmental power estimated by induced acceleration analysis (IAA). We evaluated the effect of modeling the pelvis and trunk segments as two separate segments (8 SM) versus as a single segment (7 SM) on the segmental power, support of the body, knee and hip extension acceleration produced by the joint moments during the stance phase of normal walking. Significant differences were observed in the contribution of the stance hip abductor and extensor moments to support, ipsilateral knee and hip acceleration, and ipsilateral thigh and upper body power. The primary finding was that the role of the stance hip moment in generating ipsilateral thigh and upper body power differed based on degrees of freedom in the model. Secondarily, the magnitude of contributions also differed. For example, the hip abductor and extensor moments showed greater contribution to support, hip and knee acceleration in the 8 SM. IAA and segment power analysis are sensitive to the degrees of freedom between the pelvis and trunk. There is currently no gold standard by which to evaluate the accuracy of IAA predictions. However, modeling the pelvis and trunk as separate segments is closer to the anatomical architecture of the body. An 8 SM appears to be more appropriate for estimating the role of joint moments, particularly to motion of more proximal segments during normal walking.  相似文献   

7.
The purpose of this study was to examine how inducing fatigue of the 1) lumbar erector spinae and 2) cervical erector spinae (CES) muscles affected the ability to maintain head stability during walking. Triaxial accelerometers were attached to the head, upper trunk, and lower trunk to measure accelerations in the vertical, anterior-posterior, and mediolateral directions during walking. Using three accelerometers enabled two adjacent upper body segments to be defined: the neck segment and trunk segment. A transfer function was applied to root mean square acceleration, peak power, and harmonic data derived from spectral analysis of accelerations to quantify segmental gain. The structure of upper body accelerations were examined using measures of signal regularity and smoothness. The main findings were that head stability was only affected in the anterior-posterior direction, as accelerations of the head were less regular following CES fatigue. Furthermore, following CES fatigue, the central nervous system altered the attenuation properties of the trunk segment in the anterior-posterior direction, presumably to enhance head stability. Following lumbar erector spinae fatigue, the trunk segment had greater gain and increased regularity and smoothness of accelerations in the mediolateral direction. Overall, the results of this study suggest that erector spinae fatigue differentially altered segmental attenuation during walking, according to the level of the upper body that was fatigued and the direction that oscillations were attenuated. A compensatory postural response was not only elicited in the sagittal plane, where greater segmental attenuation occurred, but also in the frontal plane, where greater segmental gain occurred.  相似文献   

8.
To determine central and peripheral hemodynamic responses to upright leg cycling exercise, nine physically active men underwent measurements of arterial blood pressure and gases, as well as femoral and subclavian vein blood flows and gases during incremental exercise to exhaustion (Wmax). Cardiac output (CO) and leg blood flow (BF) increased in parallel with exercise intensity. In contrast, arm BF remained at 0.8 l/min during submaximal exercise, increasing to 1.2 +/- 0.2 l/min at maximal exercise (P < 0.05) when arm O(2) extraction reached 73 +/- 3%. The leg received a greater percentage of the CO with exercise intensity, reaching a value close to 70% at 64% of Wmax, which was maintained until exhaustion. The percentage of CO perfusing the trunk decreased with exercise intensity to 21% at Wmax, i.e., to approximately 5.5 l/min. For a given local Vo(2), leg vascular conductance (VC) was five- to sixfold higher than arm VC, despite marked hemoglobin deoxygenation in the subclavian vein. At peak exercise, arm VC was not significantly different than at rest. Leg Vo(2) represented approximately 84% of the whole body Vo(2) at intensities ranging from 38 to 100% of Wmax. Arm Vo(2) contributed between 7 and 10% to the whole body Vo(2). From 20 to 100% of Wmax, the trunk Vo(2) (including the gluteus muscles) represented between 14 and 15% of the whole body Vo(2). In summary, vasoconstrictor signals efficiently oppose the vasodilatory metabolites in the arms, suggesting that during whole body exercise in the upright position blood flow is differentially regulated in the upper and lower extremities.  相似文献   

9.
This study validated bioelectrical impedance spectroscopy (BIS) with Cole-Cole modeled measurements of calf and arm segmental water volume and volume changes during 72 h of simulated microgravity and caloric restriction by using magnetic resonance imaging (MRI) muscle volume as a criterion method. MRI and BIS measurements of calf and upper arm segments were made in 18 healthy men and women [age, 29 +/- 8 (SD) yr; height, 171 +/- 11 cm; mass, 71 +/- 16 kg] before and after the intervention. Muscle volume of arm and leg segments by MRI was on average 15 +/- 10 and 14 +/- 8% lower, respectively, than the estimated total water volume by BIS (P < 0.01), but their correlations were excellent (r = 0.96 and r = 0.93, respectively). MRI- vs. BIS-predicted volume changes were a decrease of 49 +/- 68 vs. 41 +/- 62 ml in the calf and a decrease of 18 +/- 23 vs. 11 +/- 24 ml in the arm, respectively (P > 0.05 for both). BIS detected the extracellular water shifts in the calf resulting from the head-down tilt treatment, but the underfeeding protocol was not of sufficient duration or intensity to produce limb intracellular water changes detectable by BIS. BIS was highly correlated with segmental muscle volume and tracked changes associated with head-down tilt. Further research, however, is needed to determine whether BIS can accurately access separate changes in intracellular and extracellular volume.  相似文献   

10.
11.
The purpose of this study was to derive and validate regression equations for the prediction of fat mass (FM), lean mass (LM), wobbling mass (WM), and bone mineral content (BMC) of the thigh, leg, and leg + foot segments of living people from easily measured segmental anthropometric measures. The segment masses of 68 university-age participants (26 M, 42 F) were obtained from full-body dual photon x-ray absorptiometry (DXA) scans, and were used as the criterion values against which predicted masses were compared. Comprehensive anthropometric measures (6 lengths, 6 circumferences, 8 breadths, 4 skinfolds) were taken bilaterally for the thigh and leg for each person. Stepwise multiple linear regression was used to derive a prediction equation for each mass type and segment. Prediction equations exhibited high adjusted R2 values in general (0.673 to 0.925), with higher correlations evident for the LM and WM equations than for FM and BMC. Predicted (equations) and measured (DXA) segment LM and WM were also found to be highly correlated (R2 = 0.85 to 0.96), and FM and BMC to a lesser extent (R2 = 0.49 to 0.78). Relative errors between predicted and measured masses ranged between 0.7% and -11.3% for all those in the validation sample (n = 16). These results on university-age men and women are encouraging and suggest that in vivo estimates of the soft tissue masses of the lower extremity can be made fairly accurately from simple segmental anthropometric measures.  相似文献   

12.
Although magnetic resonance imaging (MRI) can accurately measure lower limb skeletal muscle (SM) mass, this method is complex and costly. A potential practical alternative is to estimate lower limb SM with dual-energy X-ray absorptiometry (DXA). The aim of the present study was to develop and validate DXA-SM prediction equations. Identical landmarks (i.e., inferior border of the ischial tuberosity) were selected for separating lower limb from trunk. Lower limb SM was measured by MRI, and lower limb fat-free soft tissue was measured by DXA. A total of 207 adults (104 men and 103 women) were evaluated [age 43 +/- 16 (SD) yr, body mass index (BMI) 24.6 +/- 3.7 kg/m(2)]. Strong correlations were observed between lower limb SM and lower limb fat-free soft tissue (R(2) = 0.89, P < 0.001); age and BMI were small but significant SM predictor variables. In the cross-validation sample, the differences between MRI-measured and DXA-predicted SM mass were small (-0.006 +/- 1.07 and -0.016 +/- 1.05 kg) for two different proposed prediction equations, one with fat-free soft tissue and the other with added age and BMI as predictor variables. DXA-measured lower limb fat-free soft tissue, along with other easily acquired measures, can be used to reliably predict lower limb skeletal muscle mass.  相似文献   

13.

Introduction

Localized limb edema is a clinically relevant sign in diseases such as post-thrombotic syndrome and lymphedema. Quantitative evaluation of localized edema in children is mainly done by measuring the absolute difference in limb circumference, which includes fat and fat-free mass. Bioimpedance spectroscopy (BIS) provides information on the fluid volume of a body segment. Our objective was to determine normal ranges for segmental (arm and leg) BIS measurements in healthy children. Additionally, we determined the normal ranges for the difference in arm and ankle circumference and explored the influence of handedness and the correlation between techniques.

Methods

Healthy children aged 1-18 years were recruited. The ratio of extracellular fluid content between contralateral limbs (estimated as the inter-arm and inter-leg extracellular impedance ratio), and the ratio of extracellular to intracellular fluid content for each limb (estimated as the intracellular to extracellular impedance ratio) were determined with a bioimpedance spectrometer. Arm and ankle circumference was determined with a Gulick II tape.

Results

We recruited 223 healthy children (48 infants, 54 preschoolers, 66 school-aged children, and 55 teenagers). Normal values for arm and leg BIS measurements, and for the difference in arm and ankle circumference were estimated for each age category. No influence of handedness was found. We found a statistically significant correlation between extracellular impedance ratio and circumference difference for arms among teenagers.

Conclusion

We determined normal BIS ranges for arms and legs and for the difference in circumference between arms and between ankles in children. There was no statistically significant correlation between extracellular impedance ratio and difference in circumference, except in the case of arms in adolescents. This may indicate that limb circumference measures quantities other than fluid, challenging the adequacy of this technique to determine the presence of localized edema in most age groups.  相似文献   

14.
A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2° of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4° and 4.9° during normal gait that had a 45° flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.  相似文献   

15.
The purpose of this study was to compare insulin's ability to stimulate glucose uptake in the arm and leg in a group of older hypertensive individuals (n = 13, 66 +/- 2 yr old). We also examined the effect of a 4-mo whole body resistance-training (RT) program on arm and leg glucose clearance (GC) during a hyperinsulinemic-euglycemic clamp. During the hyperinsulinemic-euglycemic clamp, GC was assessed by simultaneous measurement of arm and leg blood flow (BF) and assessment of fractional glucose extraction (GE) in blood samples from the brachial artery, brachial vein, and popliteal vein. At baseline, a significant main effect (arm vs. leg) demonstrated greater GC and BF in the arm than in the leg (P = 0.006 for GC and P = 0.012 for BF). Insulin significantly increased GE, BF, and GC in the arm and leg (main effects: P = 0.0001 for GE, P = 0.0001 for BF, and P = 0.0001 for GC) at baseline. However, the effect of insulin was similar in the arm and leg. After RT, a significant main effect (baseline vs. RT) demonstrated greater GE and GC in the leg (P = 0.024 for GE and P = 0.053 for GE), but not in the arm (P = 0.31 for GE and P = 0.14 for GC). No significant main effect (baseline vs. RT) for BF in the arm or leg was observed after RT. In conclusion, the greater GC in the arm than in the leg at baseline is primarily due to enhanced arm BF. Furthermore, whole body RT appears to increase GC in the leg but not in the arm.  相似文献   

16.
This study evaluated the arm, trunk, and leg for fat mass, lean soft tissue mass, and bone mineral content (BMC) assessed via dual-energy X-ray absorptiometry in a group of age-matched (approximately 29 yr) men (n = 57) and women (n = 63) and determined their relationship to insulin-like growth factor I (IGF-I) and leptin. After analysis of covariance adjustment to control for differences in body mass between genders, the differences that persisted (P < or = 0.05) were for lean soft tissue mass of the arm (men: 7.1 kg vs. women: 6.4 kg) and fat mass of the leg (men: 5.3 kg vs. women: 6.8 kg). Men and women had similar (P > or = 0.05) values for fat mass of the arms and trunk and lean soft tissue mass of the legs and trunk. Serum IGF-I and insulin-like growth factor binding protein-3 correlated (P < or = 0.05) with all measures of BMC (r values ranged from 0.31 to 0.39) and some measures of lean soft tissue mass for women (r = 0.30) but not men. Leptin correlated (P < or = 0.05) similarly for measures of fat mass for both genders (r values ranging from 0.74 to 0.85) and for lean soft tissue mass of the trunk (r = 0.40) and total body (r = 0.32) for men and for the arms in women (r = 0.56). These data demonstrate that 1) the main phenotypic gender differences in body composition are that men have more of their muscle mass in their arms and women have more of their fat mass in their legs and 2) gender differences exist in the relationship between somatotrophic hormones and lean soft tissue mass.  相似文献   

17.
An arthropod leg represents a protuberance of the body segmental integument which bears distinctive markers in both the mediolateral and the anteroposterior axes. To clarify the biaxial organization of the body segmental morphogenetic field, and to study the relation among the whole-limb, limb segmental, and body segmental fields previously recognized in arthropods, we have grafted a proximal leg segment into the ventral midline in crayfish. After this operation the majority of animals regenerated a mirror-symmetric pair of supernumerary legs at the host site. Some of these legs had the most proximal segment, the coxa, partially fused to the adjacent body surface. Minority patterns of regeneration included one midline leg with a gill, three midline legs with a gill, and two normal legs with a third double-half leg. These results are compatible with the principle that intercalary regeneration restores the continuity of positional information.  相似文献   

18.
In response to the presently limited information on body segment inertial characteristics of children and adolescents this investigation estimated the mass, centre of mass and principal moments of inertia of adolescent male body segments. Significant prediction equations based on anthropometric measurements were then sought. Thirteen subjects were measured at 6-monthly intervals for 2.5 yr to provide inertial characteristics for the leg, thigh, lower trunk and upper trunk segments. These characteristics were derived using an elliptical zone modelling technique. Following a correlation analysis, significant prediction equations of segment inertial parameters were derived from five, or fewer, anthropometric measurements. For all cases, more than 84% of the variance in the dependent variable was accounted for with a maximum R2 value of 94% being recorded for the prediction of thigh segment mass. The use of these prediction equations offered accurate and convenient estimates of body segment inertial characteristics within the limitations applicable to all modelling approaches. In contrast to recent studies, these equations accommodated the current morphological status of the subject.  相似文献   

19.
Total body water (TBW) measured by isotope dilution techniques can be used to assess body composition safely and accurately in children. Unfortunately, this method is not readily available for most research projects, particularly when working with large groups of people, because the equipment is complicated and highly specialized. Bioelectrical impedance (BI) method is a simple, quick, and inexpensive method for the assessment of total body water (TBW). In Japanese child population, however, a lack of prediction equations is a problem to determine TBW. The purpose of this study was to determine the prediction equation for TBW determination in Japanese children using the isotope dilution technique as the reference method. Seventy Japanese children (39 boys, 31 girls) with ages ranging between 3 and 6 years participated in this study. They were randomly divided into the validation group (26 boys, 20 girls) and cross-validation group (13 boys, 11 girls). In a forward stepwise regression analysis, 96% of the variability in TBW measured by deuterium oxide (D(2)O) dilution could be predicted by the following equation: TBW(kg)=0.149 x Resistance Index (Stature(2)/resistance, cm(2)/Omega)+0.244 x Weight(kg)+0.460 x Age(y)+0.501 x Sex (boy=1, girl=0)+1.628, with a root mean square error (RMSE) of 0.440 kg in the validation group. This equation predicted TBW in the cross-validation group with R(2)=0.946 and a pure error (PE)=0.400 kg TBW. Hence, this equation should be applicable for predicting TBW in Japanese children aged 3-6 y.  相似文献   

20.
Muscles coordinate multijoint motion by generating forces that cause reaction forces throughout the body. Thus, a muscle can redistribute existing segmental energy by accelerating some segments and decelerating others. In the process, a muscle may also produce or absorb energy, in which case its summed energetic effect on the segments is positive or negative, respectively. This Borelli Lecture shows how dynamical simulations derived from musculoskeletal models reveal muscle-induced segmental energy redistribution and muscle co-functions and synergies. Synergy occurs when co-excited muscles distribute segmental energy differently to execute the motor task. In maximum height jumping, high vertical velocity at lift-off occurs desirably at full body extension because biarticular leg muscles redistribute the energy produced by the uniarticular leg muscles. In pedaling, synergistic ankle plantarflexor force generation during leg extension allows the high energy produced by the uniarticular hip and knee extensors to be delivered to the crank. An analogous less-powerful flexor synergy exists during leg flexion. Hamstrings reduce crank deceleration during the leg extension-to-flexion transition by not only producing energy but delivering it to the crank through its contribution to the tangential (accelerating) crank force, though this hamstrings function occurs at the opposite (flexion-extension) transition when pedaling backwards. In walking, the eccentric quadriceps activity in early stance not only decelerates the leg but also accelerates the trunk. In mid-stance, the uni- and biarticular plantarflexors, by having opposite segmental energetic effects, act in synergy to support the whole body, so segmental potential and kinetic energy exchange can occur. To conclude, the extraction of unmeasurable variables from dynamical simulations emulating task kinematics, kinetics, and EMGs shows how the production of force and energy by individual muscles contribute to the energy flow among the individual segments during task execution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号