首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Patients with type 2 diabetes have high levels of triglyceride-rich lipoproteins (TRLs), including apolipoprotein B-48 (apoB-48)-containing TRLs of intestinal origin, but the mechanism leading to overaccumulation of these lipoproteins remains to be fully elucidated. Therefore, the objective of this study was to examine the in vivo kinetics of TRL apoB-48 and VLDL, intermediate density lipoprotein (IDL), and LDL apoB-100 in type 2 diabetic subjects (n = 11) and nondiabetic controls (n = 13) using a primed-constant infusion of l-[5,5,5-D(3)]leucine for 12 h in the fed state. Diabetic subjects had significantly higher fasting glycemia, higher fasting insulinemia, higher plasma triglyceride, and lower HDL-cholesterol levels than controls. Compared with controls, diabetic subjects had increased TRL apoB-48, VLDL apoB-100, and IDL apoB-100 pool sizes as a result of increased production rates (PRs) and reduced fractional catabolic rates of these lipoprotein subfractions. Furthermore, multiple linear regression analyses revealed that the diabetic/control status was an independent predictor of TRL apoB-48 PR and represented nearly 35% of its variance. These results suggest that the overaccumulation of TRLs seen in patients with type 2 diabetes is attributable to increased PRs of both intestinally derived apoB-48-containing lipoproteins and TRL apoB-100 of hepatic origin and to decreased catabolism of these subfractions.  相似文献   

2.
Although editing of apolipoprotein (apo)B in the small intestine, yielding apoB-48, is thought to be nearly complete in adult humans, small amounts of intestinal apoB-100 may also be produced. We have evaluated the fraction of unedited apoB secreted from the intestine postprandially in subjects with primary combined hyperlipidemia, a disorder in which secretion of apoB-100 into the blood is increased. Three hours after these subjects and healthy controls were fed a fat-rich meal containing retinol, the distribution of retinyl esters (RE) between plasma triglyceride-rich lipoprotein (TRL) fractions containing apoB-100 and apoB-48 was measured under conditions minimizing transfer of RE between lipoprotein particles. The estimated maximal percentage of unedited intestinal apoB-100 (approximately 3%) was not increased in subjects with primary combined hyperlipidemia, suggesting that reduced editing of intestinal mRNA does not contribute to the pathogenesis of this disorder. Postprandially, the triglyceride content of TRL containing apoB-48 more than doubled, leading to a 20% increase in mean diameter, yet the surface concentration of phospholipids and soluble apolipoproteins (apoE and total apoC) was unchanged. Furthermore, the surface concentrations of these components did not differ among TRL containing apoB-48 and two smaller fractions of apoB-100 TRL with distinct immunoreactivities. These findings suggest that available surface area is a major determinant of the particle content of each of these surface components of TRL species of differing size and origin.  相似文献   

3.
The adaptive value of apolipoprotein B-48 (apoB-48), the truncated form of apoB produced by the intestine, in lipid metabolism remains unclear. We crossed human apoC-III transgenic mice with mice expressing either apoB-48 only (apoB48/48) or apoB-100 only (apoB100/100). Cholesterol levels were higher in apoB48/48 mice than in apoB100/100 mice but triglyceride levels were similar. Lipid levels were increased by the apoC-III transgene. However, triglyceride levels were significantly higher in apoB100/100C-III than in apoB48/48C-III mice (895 +/- 395 mg/dl vs. 690 +/- 252 mg/dl; P <0.01), whereas cholesterol levels were higher in the apoB48/48C-III mice than in apoB100/100C-III (144 +/- 35 mg/dl vs. 94 +/- 30 mg/dl; P <0.00001). Triglyceride clearance from VLDL was impaired to a greater extent in apoB100/100C-III vs. apoB100/100 mice than in apoB48/48C-III vs. apoB48/48 mice. Triglyceride secretion rates were no different in apoC-III transgenic mice than in their nontransgenic littermates. ApoB-48 triglyceride-rich lipoproteins were more resistant to the triglyceride-increasing effects of apoC-III but appeared more sensitive to the remnant clearance inhibition. Our findings support a coordinated role for apoB-48 in facilitating the delivery of dietary triglycerides to the periphery. Consistent with such a mechanism, glucose levels were significantly higher in apoB48/48 mice vs. apoB100/100 mice, perhaps on the basis of metabolic competition.  相似文献   

4.
Subjects with high plasma cholesterol levels exhibit a high production of VLDL apolipoprotein B-100 (apoB-100), suggesting that cholesterol is a mediator for VLDL production. The objective of the study was to examine whether endogenous cholesterol synthesis, reflected by the lathosterol-cholesterol ratio (L-C ratio), affects the secretory rates of different VLDL subfractions. Ten healthy subjects were studied after overnight fasting. During a 10 h primed, constant infusion of 13C-valine (15 micromol/kg/h), enrichment was determined in apoB-100 from ultracentrifugally isolated VLDL-1 and VLDL-2 by gas chromatography mass spectrometry. The synthesis rates of VLDL-1 apoB-100 and VLDL-2 apoB-100, catabolism, and transfer were estimated by compartmental analysis. Mean VLDL-1 apoB-100 pool size was 90 +/- 15 mg, and mean VLDL-2 apoB-100 pool size was 111 +/- 14 mg. Absolute synthesis rate of VLDL-1 apoB-100 was 649 +/- 127 mg/day and 353 +/- 59 mg/day for VLDL-2 apoB-100. There was a strong association between the absolute synthesis rate of VLDL-2 apoB-100 and L-C ratio (r 2 = 0.61, P < 0.01). In contrast, no correlation was observed between L-C ratio and absolute synthesis rate of VLDL-1 apoB-100 (r 2 = 0.302, P = 0.09). In conclusion, these data provide additional support for an independent regulation of VLDL-1 apoB-100 and VLDL-2 apoB-100 production.Endogenous cholesterol synthesis is correlated only with the VLDL-2 apoB-100 production.  相似文献   

5.
Sixteen hyperlipidemic men were enrolled in a randomized, placebo-controlled, double-blind, cross-over study to evaluate the effect of ezetimibe 10 mg and simvastatin 40 mg, coadministered and alone, on the in vivo kinetics of apolipoprotein (apo) B-48 and B-100 in humans. Subjects underwent a primed-constant infusion of a stable isotope in the fed state. The coadministration of simvastatin and ezetimibe significantly reduced plasma concentrations of cholesterol (−43.0%), LDL-C (−53.6%), and triglycerides (−44.0%). Triglyceride-rich lipoproteins (TRL) apoB-48 pool size (PS) was significantly decreased (−48.9%) following combination therapy mainly through a significant reduction in TRL apoB-48 production rate (PR) (−38.0%). The fractional catabolic rate (FCR) of VLDL and LDL apoB-100 were significantly increased with all treatment modalities compared with placebo, leading to a significant reduction in the PS of these fractions. We also observed a positive correlation between changes in TRL apoB-48 PS and changes in TRL apoB-48 PR (r = 0.85; P < 0.0001) with combination therapy. Our results indicate that treatment with simvastatin plus ezetimibe is effective in reducing plasma TRL apoB-48 levels and that this effect is most likely mediated by a reduction in the intestinal secretion of TRL apoB-48. Our study also indicated that the reduction in LDL-C concentration following combination therapy is mainly driven by an increase in FCR of apoB-100 containing lipoproteins.  相似文献   

6.
We aimed to identify mechanisms by which apolipoprotein B-48 (apoB-48) could have an atherogenic role by simultaneously studying the metabolism of postprandial apoB-48 and apoB-100 lipoproteins. The kinetics of apoB-48 and apoB-100, each in four density subfractions of VLDL and intermediate density lipoprotein (IDL), were studied by stable isotope labeling in a constantly fed state with half-hourly administration of almond oil in five postmenopausal women. A non-steady-state, multicompartmental model was used. Despite a much lower production rate, VLDL and IDL apoB-48 shared a similar secretion pattern with apoB-100: both were directly secreted into all fractions with similar percentage mass distributions. Fractional catabolic rates (FCRs) of apoB-48 and apoB-100 were similar in VLDL and IDL. We identified a fast turnover compartment of light VLDL that had a residence time of <30 min for apoB-48 and apoB-100. Finally, a high secretion rate of apoB-48 was associated with a slow FCR of VLDL and IDL apoB-100. In conclusion, the intestine secretes a spectrum of apoB lipoproteins, similar to what the liver secretes, albeit with a much lower secretion rate. Once in plasma, intestinal and hepatic triglyceride-rich lipoproteins have similar rates of clearance and participate interactively in similar metabolic pathways, with high apoB-48 production inhibiting the clearance of apoB-100.  相似文献   

7.
Apolipoprotein E (apoE) is essential for the clearance of plasma chylomicron and VLDL remnants. The human APOE locus is polymorphic and 5-10% of APOE*2 homozygotes exhibit type-III hyperlipoproteinemia (THL), while the remaining homozygotes have less than normal plasma cholesterol. In contrast, mice expressing APOE*2 in place of the mouse Apoe (Apoe(2/2) mice) are markedly hyperlipoproteinemic, suggesting a species difference in lipid metabolism (e.g., editing of apolipoprotein B) enhances THL development. Since apoB-100 has an LDLR binding site absent in apoB-48, we hypothesized that the Apoe(2/2) THL phenotype would improve if all Apoe(2/2) VLDL contained apoB-100. To test this, we crossed Apoe(2/2) mice with mice lacking the editing enzyme for apoB (Apobec(-/-)). Consistent with an increase in remnant clearance, Apoe(2/2). Apobec(-/-) mice have a significant reduction in IDL/LDL cholesterol (IDL/LDL-C) compared with Apoe(2/2) mice. However, Apoe(2/2).Apobec(-/-) mice have twice as much VLDL triglyceride as Apoe(2/2) mice. In vitro tests show the apoB-100-containing VLDL are poorer substrates for lipoprotein lipase than apoB-48-containing VLDL. Thus, despite a lowering in IDL/LDL-C, substituting apoB-48 lipoproteins with apoB-100 lipoproteins did not improve the THL phenotype in the Apoe(2/2).Apobec(-/-) mice, because apoB-48 and apoB-100 differentially influence the catabolism of lipoproteins.  相似文献   

8.
The carrier frequency of Asn291Ser polymorphism of the lipoprotein lipase (LPL) gene is 4;-6% in the Western population. Heterozygotes are prone to fasting hypertriglyceridemia and low high density lipoprotein (HDL) cholesterol concentrations especially when secondary factors are superimposed on the genetic defect. We studied the LPL Asn291Ser gene variant as a modulator of postprandial lipemia in heterozygote carriers. Ten normolipidemic carriers were compared to ten control subjects, who were selected to have similar age, sex, BMI, and apolipoprotein (apo)E-phenotype. The subjects were given a lipid-rich mixed meal and their insulin sensitivity was determined by euglycemic hyperinsulinemic clamp technique. The two groups had comparable fasting triglycerides and glucose utilization rate during insulin infusion, but fasting HDL cholesterol was lower in carriers (1.25 +/- 0.05 mmol/L) than in the control subjects (1. 53 +/- 0.06 mmol/L, P = 0.005). In the postprandial state the most pronounced differences were found in the very low density lipoprotein 1 (VLDL1) fraction, where the carriers displayed higher responses of apoB-48 area under the curve (AUC), apoB-100 AUC, triglyceride AUC, and retinyl ester AUC than the control subjects. The most marked differences in apoB-48 and apoB-100 concentrations were observed late in the postprandial period (9 and 12 h), demonstrating delayed clearance of triglyceride-rich particles of both hepatic and intestinal origin. Postprandially, the carriers exhibited enrichment of triglycerides in HDL fraction. Thus, in normolipidemic carriers the LPL Asn291Ser gene variant delays postprandial triglyceride, apoB-48, apoB-100, and retinyl ester metabolism in VLDL1 fraction and alters postprandial HDL composition compared to matched non-carriers.  相似文献   

9.
Early radiokinetic studies revealed that the classical metabolic defect in patients with familial hypercholesterolemia (FH) is hypocatabolism of LDL due to decreased LDL receptor activity. However, recent studies have suggested that hepatic oversecretion of apolipoprotein B-100 (apoB-100)-containing lipoproteins could also contribute to the markedly elevated plasma concentrations of LDL-cholesterol found in FH. The aim of this study was to examine the kinetics of apoB-100 labeled with a stable isotope (l-[5,5,5-D(3)] leucine) in five normolipidemic controls and in seven well-characterized FH subjects that included six FH heterozygotes and one FH homozygote carrying the same null LDL receptor gene mutation. As compared with controls, the VLDL apoB-100 production rate was increased by 50% in the FH heterozygotes and by 109% in the FH homozygote. Furthermore, FH subjects had significantly higher LDL apoB-100 pool size and lower LDL apoB-100 fractional catabolic rate than controls. These results indicate that the elevation of plasma LDL-cholesterol found in FH is attributable to both decreased clearance of LDL and increased hepatic production of apoB-100-containing lipoproteins.  相似文献   

10.
Twenty two subjects (9 males, 13 females) were fed a fat-rich meal (1 g of fat/kg body weight). Triglyceride-rich lipoproteins (TRL) were isolated by ultracentrifugation (d less than 1.006 g/ml) from blood drawn 0, 3, 6, 9, and 12 hr after the meal. Plasma triglyceride increased then decreased postprandially, while plasma apoA-I and apoB concentrations decreased. TRL triglyceride, TRL total protein, and TRL apoB concentrations all increased then decreased after the fat-rich meal. Postprandial rise in plasma triglyceride was significantly correlated with fasting plasma triglyceride levels (r = 0.66, P less than 0.001); postprandial rise in TRL triglyceride was significantly correlated with fasting TRL triglyceride levels (r = 0.58, P less than 0.01); postprandial rise in TRL apoB was not, however, significantly correlated with fasting TRL apoB levels (r = 0.37, N.S.). TRL apolipoproteins were separated by polyacrylamide gradient (4-22.5%) gel electrophoresis and protein bands were scanned in two dimensions with a laser densitometer. Relative postprandial changes in the concentration of the TRL apolipoproteins were determined. TRL apoB-100, apoB-48, apoE, and apoC increased then decreased postprandially. The increase in TRL apoB-100 after the fat-rich meal was confirmed in 8 subjects by direct measurement of apoB-100 with a monoclonal antibody ELISA assay. ApoA-I concentration in TRL was unchanged. Albumin in the TRL fraction was significantly increased 12 hr after the meal. Subjects with a greater magnitude of postprandial triglyceridemia had a greater increase in TRL triglyceride and TRL apoB, but their TRL apoB-100/apoB-48 ratios were not different from subjects with less pronounced triglyceridemia. Assuming that plasma TRL containing apoB-100 are predominantly derived from the liver, our data suggest that triglyceride-rich lipoproteins from both the liver and intestine make a significant contribution to postprandial triglyceridemia.  相似文献   

11.
Human plasma low density lipoprotein (LDL), which binds 0.2% of plasma T4, was shown to interact with the hormone through its protein moiety, apolipoprotein B-100. LDL and LDL2, the major subfraction of LDL, were found to have 3 equivalent binding sites for T4 with Ka = 2.5 x 10(6) M-1. Photoaffinity labeling of LDL with inner ring-labeled [125I]T4, followed by SDS-PAGE or agarose-SDS-PAGE of the labeled products, revealed that apoB-100 and its proteolytic cleavage products, apoB-74 and apoB-26, bound [125I]T4. In the presence of 1 or 10 microM T4, labeling was decreased in 7 separate experiments by 40-53% or 65-86%, respectively, consistent with a Ka of approximately 10(6) M-1. Binding of T4 to apoB-100 associated with VLDL was also demonstrated by photoaffinity labeling. The observed thyroid hormone binding property of lipid-complexed apoB-100 and the knowledge that receptors for the apolipoprotein exist in various tissues suggest a possible physiological role in thyroid hormone transport.  相似文献   

12.
To determine the relative contribution of obesity and/or insulin resistance (IR) in the development of dyslipidemia in chronic kidney disease (CKD), we investigated the transport of apolipoprotein (apo) B-100 in nonobese, nondiabetic, nonnephrotic CKD subjects and healthy controls (HC). We determined total VLDL, VLDL1, VLDL2, intermediate density lipoprotein (IDL), and LDL-apoB-100 using intravenous D3-leucine, GC-MS, and multicompartmental modeling. Plasma apoC-III and apoB-48 were immunoassayed. In this case control study, we report higher plasma triglyceride, IDL-, VLDL-, VLDL1-, and VLDL2-apoB-100 concentrations in CKD compared with HC (P < 0.05). This was associated with decreased fractional catabolic rates [FCRs (pools/day)] [IDL:CKD 3.4 (1.6) vs. HC 5.0 (3.2), P < 0.0001; VLDL:CKD 4.8 (5.2) vs. HC 7.8 (4.8), P = 0.038; VLDL1:CKD 10.1 (8.5) vs. HC 29.5 (45.1), P = 0.007; VLDL2:CKD 5.4 (4.6) vs. HC 10.4 (3.4), P = 0.001] with no difference in production rates. Plasma apoC-III and apoB-48 were significantly higher in CKD (P < 0.001) and both correlated with impaired FCRs of VLDL, VLDL1, and VLDL2 apoB-100 (P < 0.05). In CKD, apoC-III concentration was the only independent predictor of clearance defects in VLDL and its subfractions. Moderate CKD in the absence of central adiposity and IR is associated with mild hypertriglyceridemia due to delayed catabolism of triglyceride rich lipoproteins, IDL, and VLDL, without changes in production rate. Altered apoC-III metabolism may contribute to dyslipidemia in CKD, and this requires further investigation.  相似文献   

13.
Certain triglyceride-rich lipoproteins (TRLs), specifically chylomicrons, dyslipemic VLDLs, and their remnants, are atherogenic and can induce monocyte-macrophage foam cell formation in vitro via the apolipoprotein B-48 receptor (apoB-48R). Human atherosclerotic lesion foam cells express the apoB-48R, as determined immunohistochemically, suggesting it can play a role in the conversion of macrophages into foam cells in vivo. The regulation of the apoB-48R in monocyte-macrophages is not fully understood, albeit previous studies indicated that cellular sterol levels and state of differentiation do not affect apoB-48R expression. Since peroxisome proliferator-activated receptors (PPARs) regulate some aspects of cellular lipid metabolism and may be protective in atherogenesis by up-regulation of liver X-activated receptor alpha and ATP-binding cassette transporter A1, we examined the regulation of apoB-48R by PPAR ligands in human monocyte-macrophages. Using real-time PCR, Northern, Western, and functional cellular lipid accumulation assays, we show that PPARalpha and PPARgamma activators significantly suppress the expression of apoB-48R mRNA in human THP-1 and blood-borne monocyte-macrophages. Moreover, PPAR activators inhibit the expression of the apoB-48R protein and, notably, the apoB-48R-mediated lipid accumulation of TRL by THP-1 monocytes in vitro. If PPAR activators also suppress the apoB-48R pathway in vivo, diminished apoB-48R-mediated monocyte-macrophage lipid accumulation may be yet another antiatherogenic effect of the action of PPAR ligands.  相似文献   

14.
The present study was designed to evaluate the metabolism of chylomicron and chylomicron remnants by measuring serum apolipoprotein B-48 (apoB-48) levels in 335 normolipidemic and 253 hyperlipidemic subjects using a novel ELISA system. The distribution of fasting serum apoB-48 levels in normolipidemic subjects varied widely, ranging from <1 to >24 microgram/ml (mean, 5.2 +/- 3.8 microgram/ml; median, 3.9 microgram/ml). Serum apoB-48 levels correlated with serum triglyceride (TG) concentrations (r = 0.45, P < 0.001), but not with total cholesterol levels. Serum apoB-48 levels were 7 to 18 times higher in patients with Type I, Type V, and Type III hyperlipidemia, and only slightly higher in patients with Type IIa, Type IIb, and Type IV hyperlipidemia, compared with normolipidemic subjects. The calculated apoB-48/TG ratio was elevated only in patients with dysbetalipoproteinemia (apoE2/2 phenotype). In normolipidemic subjects, oral fat loading resulted in about 2-fold increase in serum apoB-48 levels, with a peak level recorded at 3-4 h postloading, and then returned to the baseline level within 6 h. On the other hand, in patients with dysbetalipoproteinemia, serum apoB-48 levels did not change considerably. Our results indicate that serum apoB-48 is a very useful parameter for evaluating lipoprotein metabolism in exogenous pathways.  相似文献   

15.
Cellular apoB in primary rat hepatocyte cultures was pulse-labeled with [(35)S]methionine for 1 h. Cells were then chased with excess unlabeled methionine for periods of up to 16 h in the presence or absence of BMS-200150, an inhibitor of microsomal triglyceride transfer protein (MTP). The secretion of apoB-48-VLDL was more sensitive to MTP inhibition than was apoB-100-VLDL. Inhibition of MTP had no inhibitory effect on the secretion of denser particles (apoB-48 HDL and apoB-100 HDL). BMS-200150 delayed the net removal of newly synthesized apoB-48 and apoB-100 from the microsomal and Golgi membranes, but not from the corresponding lumenal compartments. Only minor proportions of the microsomal lumen apoB-48 and apoB-100 (12-16% and 17-19%, respectively) were present as VLDL irrespective of whether MTP was inactivated or not. The HDL fraction contained most of the lumenal apoB-48 (67-73%) and a somewhat smaller proportion of apoB-100 (44-47%). The remainder of the lumenal apoB was associated with the IDL/LDL fraction. These proportions were unaffected by MTP inactivation. Excess labeled apoB which accumulated in the membranes in the presence of BMS-200150 was degraded. Inhibition of MTP prevented the removal of pre-synthesized triacylglycerol (TAG) from the hepatocytes as apoB-VLDL. Under these conditions intracellular TAG accumulated mainly in the cell cytosol, but also, to a lesser extent, in the microsomal membranes. The results suggest that inactivation of MTP inhibits a pathway of VLDL assembly which does not involve the bulk lumenal compartments of the microsomes. Suppression of this pathway ultimately prevents the net transfer of cytosolic TAG into mature apoB-VLDL.  相似文献   

16.
Nine hypercholesterolemic and hypertriglyceridemic subjects were enrolled in a randomized, placebo-controlled, double-blind, crossover study to test the effect of atorvastatin 20 mg/day and 80 mg/day on the kinetics of apolipoprotein B-100 (apoB-100) in triglyceride-rich lipoprotein (TRL), intermediate density lipoprotein (IDL), and LDL, of apoB-48 in TRL, and of apoA-I in HDL. Compared with placebo, atorvastatin 20 mg/day was associated with significant reductions in TRL, IDL, and LDL apoB-100 pool size as a result of significant increases in fractional catabolic rate (FCR) without changes in production rate (PR). Compared with the 20 mg/day dose, atorvastatin 80 mg/day caused a further significant reduction in the LDL apoB-100 pool size as a result of a further increase in FCR. ApoB-48 pool size was reduced significantly by both atorvastatin doses, and this reduction was associated with nonsignificant increases in FCR. The lathosterol-campesterol ratio was decreased by atorvastatin treatment, and changes in this ratio were inversely correlated with changes in TRL apoB-100 and apoB-48 PR. No significant effect on apoA-I kinetics was observed at either dose of atorvastatin. Our data indicate that atorvastatin reduces apoB-100- and apoB-48-containing lipoproteins by increasing their catabolism and has a dose-dependent effect on LDL apoB-100 kinetics. Atorvastatin-mediated changes in cholesterol homeostasis may contribute to apoB PR regulation.  相似文献   

17.
Remnants of triglyceride-rich lipoproteins (TRL) have been implicated in the early development of atherosclerosis. We tested this hypothesis by quantifying the plasma concentration of remnant-like particle cholesterol (RLP-C) in a cohort of healthy 50-year-old men in whom the common carotid artery intima-media thickness (CCA-IMT) was assessed by B-mode ultrasound as a surrogate marker for atherosclerosis. The subjects were given a fat-rich meal to study the generation of RLP-C during postprandial lipemia. Fasting plasma RLP-C and other major fasting plasma lipids and lipoproteins were determined twice, and the mean RLP-C concentration was strongly correlated with CCA-IMT (r = 0.32, P = 0.002). In addition, low density lipoprotein (LDL) cholesterol (r = 0.25, P = 0.01) and plasma triglycerides (r = 0.20, P = 0.05) were significantly related to CCA-IMT. Multivariate analyses showed a triglyceride-independent contribution of RLP-C to CCA-IMT. After fat intake, the median plasma RLP-C concentration was doubled after 3 h. The increase was strongly related to the postprandial generation of TRL apolipoprotein (apo)B-48, and large (S(f) 60;-400) TRL apoB-100. The association with CCA-IMT was somewhat stronger for the 3-h RLP-C level than for the fasting RLP-C concentration [r = 0.27, P < 0.01 (3 h) compared with r = 0.22, P < 0.05 (0 h)].We conclude that the plasma concentration of RLP-C is related to CCA-IMT, independent of plasma triglycerides and LDL cholesterol, in a healthy middle-aged male population. - Karpe, F., S. Boquist, R. Tang, G. M. Bond, U. de Faire, and A. Hamsten. Remnant lipoproteins are related to intima-media thickness of the carotid artery independently of LDL cholesterol and plasma triglycerides. J. Lipid Res. 2001. 42: 17;-21.  相似文献   

18.
The combination of ezetimibe, an inhibitor of Niemann-Pick C1-like 1 protein (NPC1L1), and an HMG-CoA reductase inhibitor decreases cholesterol absorption and synthesis. In clinical trials, ezetimibe plus simvastatin produces greater LDL-cholesterol reductions than does monotherapy. The molecular mechanism for this enhanced efficacy has not been defined. Apolipoprotein B-100 (apoB-100) kinetics were determined in miniature pigs treated with ezetimibe (0.1 mg/kg/day), ezetimibe plus simvastatin (10 mg/kg/day), or placebo (n = 7/group). Ezetimibe decreased cholesterol absorption (-79%) and plasma phytosterols (-91%), which were not affected further by simvastatin. Ezetimibe increased plasma lathosterol (+65%), which was prevented by addition of simvastatin. The combination decreased total cholesterol (-35%) and LDL-cholesterol (-47%). VLDL apoB pool size decreased 26%, due to a 35% decrease in VLDL apoB production. LDL apoB pool size decreased 34% due to an 81% increase in the fractional catabolic rate, both of which were significantly greater than monotherapy. Combination treatment decreased hepatic microsomal cholesterol (-29%) and cholesteryl ester (-65%) and increased LDL receptor (LDLR) expression by 240%. The combination increased NPC1L1 expression in liver and intestine, consistent with increased SREBP2 expression. Ezetimibe plus simvastatin decreases VLDL and LDL apoB-100 concentrations through reduced VLDL production and upregulation of LDLR-mediated LDL clearance.  相似文献   

19.
Postprandial lipoprotein metabolism is impaired in hypertriglyceridemia. It is unknown how and to what extent atorvastatin affects postprandial lipoprotein metabolism in hypertriglyceridemic patients. We evaluated the effect of 4 weeks of atorvastatin therapy (10 mg/day) on postprandial lipoprotein metabolism in 10 hypertriglyceridemic patients (age, 40 +/- 3 years; body mass index, 27 +/- 1 kg/m2; cholesterol, 5.74 +/- 0.34 mmol/l; triglycerides, 3.90 +/- 0.66 mmol/l; HDL-cholesterol, 0.85 +/- 0.05 mmol/l; and LDL-cholesterol, 3.18 +/- 0.23 mmol/l). Patients were randomized to be studied with or without atorvastatin therapy. Postprandial lipoprotein metabolism was evaluated with a standardized oral fat load. Plasma was obtained every 2 h for 14 h. Large triglyceride-rich lipoproteins (TRLs) (containing chylomicrons) and small TRLs (containing chylomicron remnants) were isolated by ultracentrifugation, and cholesterol, triglyceride, apolipoprotein B-100 (apoB-100), apoB-48, apoC-III, and retinyl-palmitate concentrations were determined. Atorvastatin significantly (P < 0.01) decreased fasting cholesterol (-27%), triglycerides (-43%), LDL-cholesterol (-28%), and apoB-100 (-31%), and increased HDL-cholesterol (+19%). Incremental area under the curve (AUC) significantly (P < 0.05) decreased for large TRL-cholesterol, -triglycerides, and -retinyl-palmitate, while none of the small TRL parameters changed. These findings contrast with the results in normolipidemic subjects, in which atorvastatin decreased the AUC for chylomicron remnants (small TRLs) but not for chylomicrons (large TRLs). We conclude that atorvastatin improves postprandial lipoprotein metabolism in addition to decreasing fasting lipid levels in hypertriglyceridemia. Such changes would be expected to improve the atherogenic profile.  相似文献   

20.
Cholesteryl ester transfer protein (CETP) facilitates the transfer of HDL cholesteryl ester to triglyceride-rich lipoproteins (TRL). This study aimed to determine the effects of CETP inhibition with torcetrapib on TRL composition and apoB-48 metabolism. Study subjects with low HDL cholesterol (<40 mg/dl), either untreated (n = 9) or receiving atorvastatin 20 mg daily (n = 9), received placebo for 4 weeks, followed by torcetrapib 120 mg once daily for the next 4 weeks. A subset of the subjects not treated with atorvastatin participated in a third phase (n = 6), in which they received torcetrapib 120 mg twice daily for an additional 4 weeks. At the end of each phase, all subjects received a primed-constant infusion of [5,5,5-(2)H(3)]L-leucine, while in the constantly fed state, to determine the kinetics of TRL apoB-48 and TRL composition. Relative to placebo, torcetrapib markedly reduced TRL CE levels in all groups (≥-69%; P < 0.005). ApoB-48 pool size (PS) and production rate (PR) decreased in the nonatorvastatin once daily (PS: -49%, P = 0.007; PR: -49%, P = 0.005) and twice daily (PS: -30%, P = 0.01; PR: -27%, P = 0.13) cohorts. In the atorvastatin cohort, apoB-48 PS and PR, which were already lowered by atorvastatin, did not change with torcetrapib. Our findings indicate that CETP inhibition reduced plasma apoB-48 concentrations by reducing apoB-48 production but did not have this effect in subjects already treated with atorvastatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号