首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of rabbit platelets with thrombin resulted in rapid accumulations of inositol trisphosphate (IP3) in [3H]inositol-labeled platelets, increases of [3H]arachidonic acid [( 3H]AA) release, and [3H]serotonin secretion from the platelets prelabeled with these labeled compounds. The experiments using phospholipase A2 or C inhibitor suggested that not only phospholipase C but also phospholipase A2 activity plays an important role in serotonin secretion. We then studied the regulatory mechanisms of phospholipase A2 activity. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanyl-5'-(beta,gamma-iminio)triphosphate), or AlF4- caused a significant liberation of AA in digitonin-permeabilized platelets but not in intact platelets. Thrombin-stimulated AA release was not observed in permeabilized platelets, whereas thrombin acted synergistically with GTP or GTP analogs to stimulate AA release. GTP analog-stimulated AA release was inhibited by guanosine 5'-(2-O-thio)diphosphate) and was also inhibited by decreased Mg2+ concentrations. Thrombin-induced, GTP-dependent AA release, but not IP3 formation, was diminished by 100 ng/ml of pertussis toxin, associated with ADP-ribosylation of membrane 41-kDa protein(s). Thrombin-stimulated AA release from intact platelets and GTP gamma S-stimulated release from permeabilized platelets were both markedly dependent on Ca2+. However, Ca2+ addition could not enhance AA release without GTP gamma S even when Ca2+ was increased up to 10(-4) M in permeabilized platelets. The results show that thrombin-stimulated AA release from rabbit platelets is mainly mediated by phospholipase A2 activity, not by phospholipase C activity, and that Ca2+ is an important factor to the activation of phospholipase A2 but is not the sole factor to the regulation. GTP-binding protein(s) is involved in receptor-mediated activation of phospholipase A2.  相似文献   

2.
The activation of phospholipase C in human platelets is coupled to agonist receptors via guanine nucleotide-binding protein(s), and prior treatment of permeabilized platelets with GTP gamma S, GDP beta S, or pertussis toxin modifies platelet responses to agonists. Pertussis toxin is thought to act primarily as an uncoupler of Gi from cell receptors due to its ADP-ribosylating activity. However, we have found that pertussis toxin by itself can act as an agonist for intact or permeabilized platelets. Though believed to lack receptors for pertussis toxin, intact platelets, when incubated with the toxin (5-20 micrograms/ml), undergo aggregation and accumulate inositol trisphosphate and phosphatidic acid. Treatment of platelets with aspirin, incubation in the presence of creatine phosphate/creatine phosphokinase, or omission of Ca2+ and fibrinogen do not affect toxin-mediated phospholipase C activation. These effects are not observed with the ADP-ribosylating S1 monomer of toxin in intact or permeabilized platelets. Further, modification of the holotoxin with N-ethylmaleimide eliminates the toxin's ADP-ribosylating activity but does not affect its promotion of platelet aggregation and phospholipase C activation. Therefore, the activating effect of holotoxin is separable from its ADP-ribosylating activity and does not depend either upon cyclooxygenase or the ADP that may be released during platelet activation. Given the combined potentially stimulatory and inhibitory effects of pertussis holotoxin, we suggest caution in interpretation of results with this material.  相似文献   

3.
The effects of guanine nucleotides, thrombin, and platelet cytosol (100,000 X g supernatant) on the hydrolysis of polyphosphoinositides by phospholipase C was examined in isolated platelet membranes labeled with [3H]inositol. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) (10 microM) caused a 2-fold stimulation of polyphosphoinositide hydrolysis, compared to background. GTP gamma S (10 microM) plus thrombin (1 unit/ml) stimulated the release of inositol triphosphate, inositol diphosphate, and inositol phosphate 500, 300, and 250%, respectively, compared to GTP gamma S alone. Cytosol prepared from unlabeled platelets slightly increased the release of inositol phosphates from [3H]inositol-labeled membranes. Addition of cytosol plus GTP gamma S (10 microM), however, resulted in a 300% enhancement of the release of inositol phosphates compared to membranes incubated with thrombin and GTP gamma S. The stimulatory effects of cytosol and GTP gamma S on polyphosphoinositide hydrolysis were also observed when membranes were replaced by sonicated lipid vesicles prepared from a total platelet lipid extract. These data suggest that PIP2 hydrolysis in platelets is catalyzed by a soluble phospholipase C which is regulated by a GTP-binding regulatory protein.  相似文献   

4.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

5.
The liberation of arachidonic acid (AA) was investigated in platelet membranes prelabelled with [3H]AA. In rat platelet membranes, Ca2+ at concentrations over several hundred nanomolar induced [3H]AA release, with a concurrent decrease in 3H radioactivity of phosphatidylethanolamine and phosphatidylcholine. Some 4-6% of total radioactivity incorporated into platelet membrane lipids was released at 1-10 microM-Ca2+, which is nearly equivalent to that attained in agonist-stimulated platelets. Formation of lysophospholipids in [3H]glycerol-labelled membranes and decrease in [3H]AA liberated by the phospholipase A2 inhibitors mepacrine and ONO-RS-082 suggest that [3H]AA release is mainly catalysed by phospholipase A2. In intact platelets agonist-stimulated [3H]AA release was markedly decreased in the absence of extracellular Ca2+ or in the presence of the intracellular Ca2+ chelator quin 2. These results indicate that in rat platelets the rise of intracellular Ca2+ plays a primary role in the activation of phospholipase A2. In contrast, Ca2+ even at high millimolar concentrations did not effectively stimulate [3H]AA release in human platelet membranes. Thus factor(s) additional to or independent of Ca2+ is required for the liberation of AA in human platelets.  相似文献   

6.
Human platelets containing granule-bound [14C]serotonin were permeabilized, equilibrated at 0 degrees C with ATP and with various Ca2+ buffers and guanine nucleotides, and then incubated at 25 degrees C with or without a stimulatory agonist. Ca2+ alone induced the ATP-dependent secretion of [14C]serotonin (50% at a pCa of 5.1) but the sensitivity of secretion to Ca2+ was greatly enhanced by guanine nucleotides [6-fold by 100 microM GTP, 100-fold by 100 microM guanyl-5'-yl imidodiphosphate and greater than 500-fold by 100 microM guanosine 5'-O-(3-thiotriphosphate)] or by stimulatory agonists (10-fold by 2 units thrombin/ml and 4-fold by 1 microM 1-O-octadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine). When both GTP and a stimulatory agonist were added, they had synergistic effects on secretion. Cyclic GMP and GMP acted similarly to GTP. The effects of all these guanine nucleotides were inhibited by guanosine 5'-O-(2-thiodiphosphate), whereas those of stimulatory agonists were not. Our results demonstrate the presence in platelets of guanine nucleotide-dependent and independent mechanisms regulating the sensitivity of secretion to Ca2+.  相似文献   

7.
Electrically permeabilized cells of rat parotid gland, prelabelled with [3H]-inositol, synthesized [3H]-inositol phosphates (IP3 and IP2) when stimulated with alpha 1-adrenergic, muscarinic-cholinergic, and substance P receptor-agonists. Non-hydrolyzable analogues of GTP (GTP gamma S and GppNHp) also stimulated [3H]-IP3 formation by permeabilized cells and they potentiated the stimulation by receptor-agonists. These effects of guanine nucleotides occurred only with GTP analogues and only in permeabilized cells indicating an intracellular site of action. NaF stimulated [3H]-IP3 accumulation, an effect that was not entirely attributable to the ability of F- to inhibit (1,4,5)IP3 degradation. These results suggest that a guanine nucleotide-dependent regulatory protein couples Ca2+-mobilizing receptors to phospholipase C in parotid gland.  相似文献   

8.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

9.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

10.
We have compared the regulation of adenylate cyclase activity in membrane fractions from C6 glioma cells and in monolayer cultures of C6 cells that had been permeabilized with saponin. Guanine nucleotides (GTP and GTP gamma S) and isoproterenol increase adenylate cyclase activity in C6 membranes and in permeabilized C6 cells. In C6 membranes, guanine nucleotides activate adenylate cyclase in the presence or absence of isoproterenol; in permeabilized cells, however, guanine nucleotides increase adenylate cyclase activity only in the presence of isoproterenol. We suggest that the properties of the permeabilized cells more closely resemble those of intact cells, and that some component which is present in permeabilized cells but is lost following cell disruption may be important for the normal regulation of adenylate cyclase activity.  相似文献   

11.
Guanine nucleotides are thought to mediate the interaction of the receptors for calcium-mobilizing hormones and phosphoinositide-specific phospholipase C. In the present study the characteristics of guanine nucleotide-dependent phospholipase C activation were studied in [3H]inositol-labeled permeabilized hepatocytes. The nonhydrolyzable GTP analogs guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) and guanyl-5'-yl imidodiphosphate stimulated the production of inositol phosphates by phospholipase C. The effect was concentration-dependent with half-maximal and maximal stimulation occurring with 0.6 and 10 microM GTP gamma S, respectively. The guanine nucleotide-induced stimulation of phosphoinositide breakdown was selective for phosphatidylinositol (4,5)-bisphosphate over phosphatidylinositol (4)-phosphate. The individual inositol phosphates formed after maximal GTP gamma S exposure were analyzed by high-performance liquid chromatography. Inositol 1,4,5-trisphosphate was rapidly produced, followed by the formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-trisphosphate. Ethanol is known to activate hormone-sensitive phospholipase C in intact rat hepatocytes. Ethanol (0.3 M) was ineffective in altering the characteristics of GTP gamma S-stimulated phospholipase C activation, in both digitonin-treated and sonicated hepatocytes. The metabolism of the various inositol phosphate isomers was unaffected by ethanol. The findings demonstrate the potential for the use of permeabilized hepatocytes in the analysis of phospholipase C activation by guanine nucleotides. Ethanol does not activate phospholipase C by altering this process.  相似文献   

12.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The effect of guanine nucleotides on platelet and calf brain cytosolic phospholipase C was examined in the absence of membranes or detergents in an assay using labeled lipid vesicles. Guanine nucleotides stimulate hydrolysis of [3H]phosphatidylinositol 4,5-bisphosphate [( 3H]PtdIns-4,5-P2) catalyzed both by enzyme from human platelets and by partially purified enzyme from calf brain. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) was the most potent guanine nucleotide with a half-maximal stimulation at 1-10 microM, followed by guanosine 5'-(beta, gamma-imido)triphosphate greater than GTP greater than GDP = guanosine 5'-O-(2-thiodiphosphate). Guanosine 5'-O-(2-thiodiphosphate) was able to reverse the GTP gamma S-mediated stimulation. NaF also stimulated phospholipase C activity, further implying a role for a guanine nucleotide-binding protein. In the presence of GTP gamma S, the enzyme cleaved PtdIns-4,5-P2 at higher pH values, and the need for calcium ions was reduced 100-fold. The stimulation of PtdIns-4,5-P2 hydrolysis by GTP gamma S ranged from 2 to 25-fold under various conditions, whereas hydrolysis of [3H]phosphatidylinositol was only slightly affected by guanine nucleotides. We propose that a soluble guanine nucleotide-dependent protein activates phospholipase C to hydrolyze its initial substrate in the sequence of phosphoinositide-derived messenger generation.  相似文献   

14.
We studied the effects of GTP and its' analogues on PTH release in permeabilized parathyroid cells to assess their role in mediating the unusual inverse relationship between Ca2+ and PTH release in intact parathyroid cells. Both 10-5 M GppNHp and GTP gamma S, nonhydrolysable analogues of GTP, produce up to an 8-fold enhancement of PTH release, which is dose-dependent. This effect is specific for GTP analogues as we could not mimic it with other nucleotides. 10(-3) M GDP beta S, a nonhydrolysable GDP analogue, completely abolishes GppNHp-stimulated hormone release, providing further support for mediation of this effect by a guanine-nucleotide regulatory protein. In GppNHp-stimulated cells, PTH release is maximal at free [Ca2+] less than 200 nM and progressively decreases as the free [Ca2+] increases from 300 nM to 100 microM. These results suggest the presence of a guanine-nucleotide binding protein in the parathyroid cell that may play an important role in the regulation of PTH secretion by Ca2+ and perhaps other secretagogues.  相似文献   

15.
ATP promoted biphasic effects on both basal and fMLP-stimulated arachidonic acid (AA) release in neutrophil-like HL60 cells: stimulation in the micromolar range (EC50 = 3.2 +/- 0.9 microM) and inhibition at higher concentrations (EC50 = 90 +/- 11 microM). ATP also inhibited UTP- and platelet activating factor-stimulated AA release. Only stimulatory effects of ATP on basal or fMLP-stimulated phospholipase C were observed. The inhibitory effect of ATP on AA release was not due to reacylation of released AA, chelation of extracellular Ca2+, cell permeabilization, or changes in the rise of [Ca2+]i induced by agonist. The inhibition was rapid, being detected within 5-15 s. The inhibitory effect of ATP on fMLP-stimulated AA release could be desensitized by pretreatment of the cells with 2 mM ATP, but not 20 microM ATP, the concentration that resulted in maximal release of AA and inositol phosphates. The inhibition by ATP was neither dependent on generation of adenosine by ATP hydrolysis nor the result of direct interaction of ATP with P1 purinergic receptors. Among other nucleotides tested (CTP, GTP, ITP, TTP, XTP, adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP), adenyl-5'-yl imidodiphosphate (AMP-P(NH)P), ADP, adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), and UTP), only UTP and ATP gamma S displayed biphasic effects with potencies and efficacies almost identical to those of ATP. The other nucleotides only exhibited stimulatory effects (EC50 = 60-300 microM). The results are consistent with a model of dual regulation of AA release by two distinct subtypes of P2U receptors in HL60 cells.  相似文献   

16.
In previous studies we have demonstrated that ethanol activates hormone-sensitive phospholipase C in intact human platelets, resulting in the mobilization of intracellular Ca2+ and platelet shape change. The present study aims to localize further this effect of ethanol by examining its interaction with the regulation of phospholipase C in a permeabilized cell system. In platelets permeabilized with a minimal concentration (18 micrograms/ml) of saponin, ethanol by itself did not activate phospholipase C. However, ethanol potentiated the activation of phospholipase C in response to the non-hydrolysable GTP analogue GTP[S] (guanosine 5'-[gamma-thio]triphosphate), an effect similar to that observed with thrombin. Ethanol also potentiated the response to fluoride, which acts directly on G-proteins. Other short-chain alcohols also stimulated phospholipase C in a synergistic manner with GTP[S]. The ability of specific alcohols to stimulate phospholipase C was directly related to their respective lipid-solubilities, as determined by their partition coefficients. Moreover, the potencies of each alcohol correlated with their ability to elicit Ca2+ mobilization and shape change in intact platelets. These effects of ethanol were eliminated by a disruption of receptor-phospholipase C coupling induced by the addition of higher concentrations of saponin. These data indicate that the activation of phospholipase C by ethanol may occur by affecting protein-protein interactions in the signal-transduction complex involving GTP-binding regulatory proteins.  相似文献   

17.
Incubation of human platelets with myo-[3H]inositol in a low-glucose Tyrode's solution containing MnCl2 enhanced the labelling of phosphoinositides about sevenfold and greatly facilitated the measurement of [3H]inositol phosphates formed by the activation of phospholipase C. Labelled platelets were permeabilized by high-voltage electric discharges and equilibrated at 0 degree C with ATP, Ca2+ buffers and guanine nucleotides, before incubation in the absence or presence of thrombin. Incubation of these platelets with ATP in the presence or absence of Ca2+ ions led to the conversion of [3H]phosphatidylinositol to [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PtdInsP2). At a pCa of 6, addition of 100 microM GTP[gamma S] both prevented this accumulation of [3H]PtdInsP2 and stimulated its breakdown; the formation of [3H]inositol phosphates was increased ninefold. After 5 min these comprised 70% [3H]inositol monophosphate ([3H]InsP), 28% [3H]inositol bisphosphate ([3H]InsP2) and 2% [3H]inositol trisphosphate ([3H]InsP3). In shorter incubations higher percentages of [3H]InsP2 and [3H]InsP3 were found. In the absence of added Ca2+, the formation of [3H]inositol phosphates was decreased by over 90%. Incubation of permeabilized platelets with GTP[gamma S] in the presence of 10 mM Li+ decreased the accumulation of [3H]InsP and increased that of [3H]InsP2, without affecting [3H]InsP3 levels. Addition of unlabelled InsP3 decreased the intracellular hydrolysis of exogenous [32P]InsP3 but did not trap additional [3H]InsP3. These results and the time course of [3H]inositol phosphate formation suggest that GTP[gamma S] stimulated the action of phospholipase C on a pool of [3H]phosphatidylinositol 4-phosphate that was otherwise converted to [3H]PtdInsP2 and that much less hydrolysis of [3H]phosphatidylinositol to [3H]InsP or of [3H]PtdInsP2 to [3H]InsP3 occurred. At a pCa of 6, addition of thrombin (2 units/ml) to permeabilized platelets caused small increases in the formation of [3H]InsP and [3H]InsP2. This action of thrombin was enhanced twofold by 10-100 microM GTP and much more potently by 4-40 microM GTP[gamma S]. In the presence of the latter, thrombin also increased [3H]InsP3. The total formation of [3H]inositol phosphates by permeabilized platelets incubated with thrombin and GTP[gamma S] was comparable with that observed on addition of thrombin alone to intact platelets. However, HPLC of the [3H]inositol phosphates formed indicated that about 75% of the [3H]InsP accumulating in permeabilized platelets was the 4-phosphate, whereas in intact platelets stimulated by thrombin, up to 80% was the 1-phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The effects of exogenous guanine nucleotides on the polymerization of actin in human neutrophils were tested in an electropermeabilized cell preparation. Close to 40% permeabilization was achieved with a single electric discharge as measured by nucleic acid staining with ethidium bromide or propidium iodide with minimal (less than 2%) release of the cytoplasmic marker lactate dehydrogenase. In addition, electropermeabilized neutrophils retained their capacity to produce superoxide anions and to sustain a polymerization of actin in response to surface-receptor dependent stimuli such as chemotactic factors. Electropermeabilization produced a rapid and transient permeabilization that allowed the entry of guanine nucleotides into the cells. GTP and, to a larger extent, its nonhydrolyzable analog guanosine 5'-O-2-thiotriphosphate (GTP[S]), induced a time- and concentration-dependent polymerization of actin, as determined by increased staining with 7-nitrobenz-2-oxa-1,3-diazolylphallacidin. The effects of the aforementioned guanine nucleotides were antagonized by GDP[S], but were insensitive to pertussis toxin. Cholera toxin potentiated to a small degree the amount of actin polymerization induced by GTP[S]. These results provided direct evidence for the involvement of GTP-binding proteins in the regulation of the organization of the cytoskeleton of neutrophils, an event that is of crucial importance to the performance of the defense-oriented functions of these cells.  相似文献   

19.
We have investigated the regulation of phospholipase D (PLD) activity by guanine nucleotides and Ca2+ in cells of the NG108-15 neuroblastoma X glioma line that were permeabilized with digitonin. The nonhydrolyzable GTP analogue guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) caused a nearly sixfold increase (EC50 = 3 microM) in production of [3H]phosphatidylethanol (specific product of the PLD transphosphatidylation reaction). Other GTP analogues were less effective than GTP gamma S, and guanosine-5'-O-(2-thiodiphosphate) inhibited PLD activation by GTP gamma S. Both basal and GTP gamma S-stimulated PLD activities were potentiated by MgATP and Mg2+. Adenosine-5'-O-(3-thiotriphosphate) and ADP also potentiated the effect of GTP gamma S, but non-phosphorylating analogues of ATP had no such effect. The activation of PLD by GTP gamma S did not require Ca2+ and was independent of free Ca2+ ions up to a concentration of 100 nM (resting intracellular concentration). Higher Ca2+ concentrations (greater than or equal to 1 microM) completely inhibited PLD activation by GTP gamma S. It is concluded that elevated intracellular Ca2+ concentrations may negatively modulate PLD activation by a guanine nucleotide-binding protein, thus affecting receptor-PLD coupling in neural-derived cells.  相似文献   

20.
Binding of the poorly hydrolyzable GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to purified guanine-nucleotide-binding regulatory proteins (G proteins) has been shown to be nonreversible in the presence of millimolar concentrations of Mg2+. In porcine atrial membranes, binding of [35S]GTP[S] to G proteins was stable in the presence of 1 mM Mg2+. However, either large dilution or, even more strongly, addition of unlabelled guanine nucleotides, in the potency order, GTP[S] greater than GTP greater than or equal to guanosine 5'-[beta,gamma-imino]triphosphate greater than GDP greater than or equal to guanosine 5'-[beta-thio]diphosphate greater than GMP, markedly enhanced the observed dissociation, with 20-30% of bound [35S]GTP[S] being released by unlabelled guanine nucleotide within 20 min at 25 degrees C. Most interestingly, dissociation of [35S]GTP[S] was rapidly and markedly stimulated by agonist (carbachol) activation of cardiac muscarinic acetylcholine receptors. Carbachol-stimulated release of [35S]GTP[S] was strictly dependent on the presence of Mg2+ and an unlabelled guanine nucleotide. Although having different potency and efficiency in releasing [35S]GTP[S] from the membranes by themselves, the guanine nucleoside triphosphates and diphosphates studied, at maximally effective concentrations, promoted the carbachol-induced dissociation to the same extent, while GMP and ATP were ineffective. GTP[S]-binding-saturation experiments indicated that one agonist-activated muscarinic acetylcholine receptor can cause release of bound GTP[S] from three to four G proteins. The data presented indicate that binding of GTP[S] to G proteins in intact membranes, in contrast to purified G proteins, is reversible, and that agonist-activated receptors can even, either directly or indirectly, interact with GTP[S]-bound G proteins, resulting in release of bound guanine nucleoside triphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号