首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
4.

Background

Mouse mammary tumor virus (MMTV) encodes the Rem protein, an HIV Rev-like protein that enhances nuclear export of unspliced viral RNA in rodent cells. We have shown that Rem is expressed from a doubly spliced RNA, typical of complex retroviruses. Several recent reports indicate that MMTV can infect human cells, suggesting that MMTV might interact with human retroviruses, such as human immunodeficiency virus (HIV), human T-cell leukemia virus (HTLV), and human endogenous retrovirus type K (HERV-K). In this report, we test whether the export/regulatory proteins of human complex retroviruses will increase expression from vectors containing the Rem-responsive element (RmRE).

Results

MMTV Rem, HIV Rev, and HTLV Rex proteins, but not HERV-K Rec, enhanced expression from an MMTV-based reporter plasmid in human T cells, and this activity was dependent on the RmRE. No RmRE-dependent reporter gene expression was detectable using Rev, Rex, or Rec in HC11 mouse mammary cells. Cell fractionation and RNA quantitation experiments suggested that the regulatory proteins did not affect RNA stability or nuclear export in the MMTV reporter system. Rem had no demonstrable activity on export elements from HIV, HTLV, or HERV-K. Similar to the Rem-specific activity in rodent cells, the RmRE-dependent functions of Rem, Rev, or Rex in human cells were inhibited by a dominant-negative truncated nucleoporin that acts in the Crm1 pathway of RNA and protein export.

Conclusion

These data argue that many retroviral regulatory proteins recognize similar complex RNA structures, which may depend on the presence of cell-type specific proteins. Retroviral protein activity on the RmRE appears to affect a post-export function of the reporter RNA. Our results provide additional evidence that MMTV is a complex retrovirus with the potential for viral interactions in human cells.  相似文献   

5.
6.
Recombinant retroviruses containing the trans activator genes of human T-cell leukemia virus (HTLV) type II and human T-cell lymphotropic virus type III were constructed. The trans activator genes tat II and tat III were inserted into the murine retroviral vector pZIPNEOSV(X)1. Recombinant plasmids were transfected into the psi 2 and psi AM packaging cell lines that produce murine leukemia virions containing no retroviral RNA. Functional tat II and tat III gene products were expressed as demonstrated by trans activation of HTLV type I and II and human T-cell lymphotropic virus type III long terminal repeat-directed gene expression in the respective infected cells. Use of these recombinant vectors permits high-efficiency gene transfer into a wide variety of cells, thereby providing the opportunity to study the biochemical effects associated with tat II and tat III gene expression.  相似文献   

7.
The human T-cell leukemia viruses (HTLV) are associated with T-cell malignancies in humans. The malignant transformation occurs after a long latency in some carriers, and its mechanism appears to be distinct from that of other classes of retroviruses which induce transformation through viral or cellular oncogenes. A widely postulated explanation is that the products of novel pX genes transactivate endogenous cellular genes which lead to tumor development in T cells. To directly examine the pathological effects of pX genes in vivo, we produced transgenic mice harboring the HTLV type I pX genes under several regulatory units: HTLV type I long terminal repeat, immunoglobulin enhancer-simian virus 40 promoter, and mouse mammary tumor virus long terminal repeat. Atrophy of the thymus was characteristic in these mice no matter which regulatory unit directed the expression of the genes.  相似文献   

8.
A common feature of gene expression in all retroviruses is that unspliced, intron-containing RNA is exported to the cytoplasm despite the fact that cellular RNAs which contain introns are usually restricted to the nucleus. In complex retroviruses, the export of intron-containing RNA is mediated by specific viral regulatory proteins (e.g., human immunodeficiency virus type 1 [HIV-1] Rev) that bind to elements in the viral RNA. However, simpler retroviruses do not encode such regulatory proteins. Here we show that the genome of the simpler retrovirus Mason-Pfizer monkey virus (MPMV) contains an element that serves as an autonomous nuclear export signal for intron-containing RNA. This element is essential for MPMV replication; however, its function can be complemented by HIV-1 Rev and the Rev-responsive element. The element can also facilitate the export of cellular intron-containing RNA. These results suggest that the MPMV element mimics cellular RNA transport signals and mediates RNA export through interaction with endogenous cellular factors.  相似文献   

9.
10.
11.
12.
13.
14.
A monoclonal antibody, designated HT462, is described which is specific for an antigen expressed in human T-cell leukemia/lymphoma virus (HTLV) preparations and by HTLV-infected cells. In indirect immunofluorescence assays, the antigen was detected on the surface of both HTLV-transformed producer and nonproducer cells, including cells infected in vitro with either HTLV subgroup I (HTLV-I) or HTLV-II. Normal human peripheral blood lymphocytes stimulated with phytohemagglutinin, cord blood T cells cultured with T-cell growth factor, and a variety of HTLV-negative T- and B-cell lines all lacked HT462 antigen expression. The HT462 antigen is a 52,000-molecular-weight glycoprotein, as shown by Western blotting procedures and treatment of viral preparations with neuraminidase, endoglycosidase F, and trypsin. The unglycosylated molecule is approximately 42,000 daltons. That the antigen is virus associated was demonstrated by its banding at the density of HTLV in gradients of metrizamide and by its concomitant synthesis with HTLV gag proteins after short-term culture of primary HTLV-positive leukemic cells. Differential expression of the HT462 antigen and HTLV gag-pol gene products was observed. In one case, low HT462 expression was correlated with the known inability of the particular cell line to produce syncytia in vitro. The properties of the HT462 antigen are most consistent with it being a gene product of the HTLV px region or else a cellular antigen specifically induced after viral infection. We cannot rule out, however, that the antigen is a variant cleavage product of the env gene. The monoclonal HT462 will be useful in further definition of the proteins and functions encoded by the env-px genetic sequence and in studying the biological properties of HTLV-transformed cells. Furthermore, the monoclonal, by recognizing HTLV-transformed nonproducers, will allow a greater spectrum of virus-infected cells to be detected.  相似文献   

15.
R A Ogert  L H Lee    K L Beemon 《Journal of virology》1996,70(6):3834-3843
All retroviruses need mechanisms for nucleocytoplasmic export of their unspliced RNA and for maintenance of this RNA in the cytoplasm, where it is either translated to produce Gag and Pol proteins or packaged into viral particles. The complex retroviruses encode Rev or Rex regulatory proteins, which interact with cis-acting viral sequences to promote cytoplasmic expression of incompletely spliced viral RNAs. Since the simple retroviruses do not encode regulatory proteins, we proposed that they might contain cis-acting sequences that could interact with cellular Rev-like proteins. To test this possibility, we initially looked for a cis-acting sequence in avian retroviruses that could substitute for Rev and the Rev response element in human immunodeficiency virus type 1 expression constructs. A cis-acting element in the 3' untranslated region of Rous sarcoma virus (RSV) RNA was found to promote Rev-independent expression of human immunodeficiency virus type 1 Gag proteins. This element was mapped between RSV nucleotides 8770 and 8925 and includes one copy of the direct repeat (DR) sequences flanking the RSV src gene; similar activity was observed for the upstream DR. To address the function of this element in RSV, both copies of the DR sequence were deleted. Subsequently, each DR sequence was inserted separately back into this deleted construct. While the viral construct lacking both DR sequences failed to replicate, constructs containing either the upstream or downstream DR replicated well. In the absence of both DRs, Gag protein levels were severely diminished and cytoplasmic levels of unspliced viral RNA were significantly reduced; replacement of either DR sequence led to normal levels of Gag protein and cytoplasmic unspliced RNA.  相似文献   

16.
17.
Cell-to-cell viral transfer facilitates the spread of lymphotropic retroviruses such as human immunodeficiency virus (HIV) and human T-cell leukemia virus (HTLV), likely through the formation of "virological synapses" between donor and target cells. Regarding HIV replication, the importance of cell contacts has been demonstrated, but this phenomenon remains only partly characterized. In order to alter cell-to-cell HIV transmission, we have maintained cultures under continuous gentle shaking and followed viral replication in this experimental system. In lymphoid cell lines, as well as in primary lymphocytes, viral replication was dramatically reduced in shaken cultures. To document this phenomenon, we have developed an assay to assess the relative contributions of free and cell-associated virions in HIV propagation. Acutely infected donor cells were mixed with carboxyfluorescein diacetate succinimidyl ester-labeled lymphocytes as targets, and viral production was followed by measuring HIV Gag expression at different time points by flow cytometry. We report that cellular contacts drastically enhance productive viral transfer compared to what is seen with infection with free virus. Productive cell-to-cell viral transmission required fusogenic viral envelope glycoproteins on donor cells and adequate receptors on targets. Only a few syncytia were observed in this coculture system. Virus release from donor cells was unaffected when cultures were gently shaken, whereas virus transfer to recipient cells was severely impaired. Altogether, these results indicate that cell-to-cell transfer is the predominant mode of HIV spread and help to explain why this virus replicates so efficiently in lymphoid organs.  相似文献   

18.
Cell lines established directly from adult T-cell leukemia-lymphoma patients or immortalized by human T-cell leukemia virus type I (HTLV-I) in vitro that do not produce complete HTLV virions were characterized both for the content of viral proteins and for the presence of trans-acting factors activating gene expression under the control of the HTLV long terminal repeat. The expression of the 42-kilodalton HTLV x-lor product correlated with trans-activation of the long terminal repeat. The implications of this study for understanding the role of the HTLV x-lor product in the initiation and maintenance of T-lymphocyte transformation are discussed.  相似文献   

19.
Novel cytoplasmic mRNA species produced by human T-cell leukemia virus type I (HTLV-I) were cloned by using the polymerase chain reaction technique. Five novel 3' splice sites located in the X region and upstream of the env gene were identified. Splicing to the 3' splice sites in the X region generates mRNAs that express two previously unidentified viral proteins, named Rof and Tof. Tof accumulates in the nucleoli of transfected cells. The other viruses of the HTLV family, such as HTLV-II and bovine leukemia virus, also have a complex splicing pattern and are capable of producing additional proteins encoded in the X region. These results suggest that HTLV-I and other members of the HTLV family produce novel proteins, which may contribute to the biological properties of these viruses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号