首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to analyse the expression of matrix metalloproteinase-2 (MMP-2) and its extracellular matrix metalloproteinase inducer (EMMPRIN) in non-small cell lung cancer (NSCLC), and to evaluate their significance to predict tumour behaviour. The study consists of 212 patients treated by the resection of the tumour. Tumour samples were stained immunohistochemically, and the expression of MMP-2 and EMMPRIN was evaluated both in tumour cells and in peritumoural stromal tissue. The results were compared with clinicopathological factors and survival of the patients. High expression of MMP-2 in tumour cells was found in 83 out of 191 cases (44%). Adenocarcinomas showed more often high expression of MMP-2 as compared with squamous cell or large cell carcinomas (p=0.001). High cancer cell associated MMP-2 expression was associated with increased tumour recurrence (p=0.001). Tumour stroma showed positive staining in 162 (98%) cases and was considered highly stained in 120 (72%) cases. The high stromal MMP-2 expression was noticed more often among large cell carcinomas as compared with other histological types (p=0.007). High cancer cell associated EMMPRIN expression was found in 115 (61%) cases and was associated only with high MMP-2 expression in tumour cells (p=0.006). In overall survival (OS) and disease free survival (DFS) analyses, type of tumour (p=0.001 and p=0.0004), advanced stage (p=0.001 and p=0.013) and high MMP-2 expression in tumour cells (p=0.018 and p=0.001) were associated with poor survival. Also, high stromal MMP-2 expression was related to poor outcome in both OS and DFS analyses (p=0.010 and 0.045, respectively). In multivariate analysis, stromal MMP-2 expression retained its prognostic value to predict OS and DFS (p=0.028 and p=0.039, respectively), together with tumour type and stage (p=0.017, p=0.001 and p=0.021, p=0.008, respectively). The present study shows the significant prognostic value of MMP-2 in NSCLC suggesting that the use of MMP-2 is valuable in determining the patients with more aggressive disease.  相似文献   

2.
Matrix-metalloproteinases in bronchopulmonary carcinomas.   总被引:1,自引:0,他引:1  
Matrix metalloproteinases (MMPs) represent a group of enzymes involved in the degradation of most of the components of the extracellular matrix and therefore participate in tumoural invasion. MMPs, especially gelatinases A and B, MT1-MMP, the activator of gelatinase A, and stromelysin-3 were found overexpressed in many cancers including bronchopulmonary carcinomas. In vivo observations revealed that fibroblasts are the principal source of production of MMPs. Some of these enzymes such as MT1-MMP and stromelysin 3, displayed a focal stromal localisation near preinvasive and invasive tumour clusters. Furthermore, some tumour cell lines were shown to stimulate the expression of MT1-MMP by fibroblasts. All these in vivo and in vitro results suggest that certain tumour cells produce diffusible factors which could influence the MMP stromal expression. Among these factors, the TCSF (Tumor Collagenase Stimulatory Factor) which is known to upregulate some MMPs in vitro could be a good candidate for this stromal regulation, since it is produced by bronchial tumour cells in vivo. In this review, we address such a cooperation between tumour and stromal cells for the production of MMPs and emphasize their necessity for tumoural progression in bronchopulmonary carcinomas.  相似文献   

3.
4.
Tumor cells interact with stromal cells via soluble or cell-bound factors stimulating the production of matrix metalloproteinases (MMPs), a group of enzymes largely involved in the extracellular matrix (ECM) remodeling in tumor invasion. Among these factors, extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to stimulate in vitro the fibroblast production of various MMPs such as interstitial collagenase (MMP-1), stromelysin-1 (MMP-3), and gelatinase A (MMP-2). In this study, the EMMPRIN protein was detected by immunohistochemistry prominently in malignant proliferations of the breast and the lung. It was present at the surface of both tumor epithelial and peritumor stromal cells. Because previous studies have reported that stromal cells do not express EMMPRIN mRNAs, it is very likely that EMMPRIN is bound to stromal cells via a specific receptor. Moreover, our observations also demonstrated that the same peritumor stromal cells strongly express MMP-2. Our results show that EMMPRIN is an important factor in tumor progression by causing tumor-associated stromal cells to increase their MMP-2 production, thus facilitating tumor invasion and neoangiogenesis. (J Histochem Cytochem 47: 1575-1580, 1999)  相似文献   

5.
6.
Thrombospondin-1 (TSP-1) is a 450 kDa matrix bound glycoprotein involved in tumor invasion, metastasis, and angiogenesis. One of the receptors involved in TSP-1 mediated tumor cell adhesion and metastasis is the cysteine-serine-valine-threonine-cysteine-glycine (CSVTCG) receptor. One mechanism of TSP-1 in promoting tumor cell metastasis involves the up-regulation of matrix metalloproteinase-9 (MMP-9) expression, specifically through the CSVTCG TSP-1 receptor. TSP-1 and its CSVTCG receptor has been implicated in tumor progression in a variety of cancers including breast adenocarcinomas, head and neck squamous cell carcinomas, and pancreatic carcinomas. In this study, we examined 99 cases of colorectal cancer by immunohistochemical analysis to investigate 1) the localization of TSP-1 and CSVTCG TSP-1 receptor, 2) the relationship with MMP-9, and 3) the correlation of expression with clinical staging. Strong expression of TSP-1 was observed in the submucosa or the serosa adjacent to the tumor. Positive staining for CSVTCG TSP-1 receptor was observed in tumor cells and microvessels. MMP-9 was also expressed in tumor cells. In addition, staining intensity of CSVTCG TSP-1 receptor was higher in poorly differentiated adenocarcinoma than well or moderately differentiated adenocarcinoma. Tumors in which inflammatory cells stained strongly for CSVTCG TSP-1 receptor correlated with decreased incidence of distant metastasis and angiogenesis. These data were consistent with our previous studies for breast, pancreatic, and head and neck carcinoma. They suggest an important role for TSP-1 and CSVTCG TSP-1 receptor in tumor progression in colorectal cancer.  相似文献   

7.
8.
9.
Osteoblast-derived matrix metalloproteinases (MMPs) are considered to play a crucial role in bone formation and initiation of bone resorption by degrading the bone matrix. MMP-2 is constitutively secreted in a latent zymogen by osteoblasts, and requires the process of activation mediated by membrane-type matrix metalloproteinase-1 (MT1-MMP)/tissue inhibitor of metalloproteinase (TIMP-2) complex in the cell surface. Bone is one target tissue for progestins. In the present study, we observed the effects of progesterone on proMMP-2 activation and MT1-MMP expression, and also TIMP-2 levels in osteoblastic MG-63 cells. Gelatin zymograms and ELISA showed that progesterone have no effects on proMMP-2 activation. Using Western immunoblot analysis, we unexpectedly found that treatment with increasing doses of progesterone in MG-63 cells caused a dose-dependent increase in expression of MT1-MMP protein, and after 48h treatment, progesterone at 10(-8)M increased MT1-MMP protein level. Confocal immunohistochemistry analysis also confirmed that progesterone induced MT1-MMP expression in MG-63 cells. The results of Northern blot analysis showed that progesterone at 10(-8)M increased MT1-MMP protein levels after 48 h treatment. We also found that TIMP-2 levels were undetectable in MG-63 cells. In conclusion, progesterone increases MT1-MMP protein and mRNA levels in MG-63 cells, but has no effects on proMMP-2 activation, which is partly attributable to the undetectable levels of tissue inhibitor of metalloproteinase-2 (TIMP-2). Our studies suggest that TIMP-2 is involved in proMMP-2 activation, and regulation of MT1-MMP by progesterone may contribute to its actions on bone formation.  相似文献   

10.
During implantation in mice, tissue inhibitor of matrix metalloproteinases-3 is believed to play a key role in inhibiting matrix metalloproteinase activity associated with embryo invasion and tissue remodeling. The first objective of this study was to quantitatively compare the steady-state mRNA levels of tissue inhibitors of matrix metalloproteinases between segments of the mouse uterus undergoing decidualization compared to those that are not during early pregnancy plus oil-induced decidualization. Steady-state tissue inhibitor of metalloproteinase-3 mRNA levels were significantly greater in implantation compared to interimplantation areas on days 6 and 7 of pregnancy and in stimulated compared to nonstimulated uterine horns at 48 and 72 hr after artificial induction of decidualization. Steady-state tissue inhibitor of metalloproteinase-1 mRNA levels were significantly greater in implantation compared to interimplantation areas on days 5-8 of pregnancy and in stimulated compared to nonstimulated uterine horns at 24, 48, and 72 hr after oil stimulation. Therefore, the steady-state mRNA levels of tissue inhibitors of metalloproteinase-1 and -3 increased in the uterus during decidualization. The second objective of this study was to determine if transforming growth factor-beta1 influences tissue inhibitors of metalloproteinase mRNA concentrations in mouse endometrial stromal cells. As determined by Northern blot analyses, transforming growth factor beta1 significantly increased tissue inhibitors of matrix metalloproteinases-1 and -3 mRNA levels in cultured mouse endometrial stromal cells isolated from uteri sensitized for decidualization. On the other hand, interleukin-1, epidermal growth factor, and leukemia inhibitory factor had no effect. The results of this study further characterize the tissue inhibitor of metalloproteinase expression in the uterus during implantation and artificially induced decidualization and the potential control of their expression in the stroma by transforming growth factor.  相似文献   

11.
Studies have shown that intake of quercetin was inversely associated with mortality from coronary heart disease. Since recent studies documented that disruption of atherosclerotic plaques is the key event triggering acute myocardial infarction, and vascular endothelium-derived matrix metalloproteinase-1 (MMP-1) contributes to plaque destabilization, we examined the effect of quercetin on MMP-1 expression in human vascular endothelial cells. Our results showed that quercetin significantly inhibited basal and oxidized LDL (oxLDL)-stimulated MMP-1 expression. Our data also indicated that extracellular signal-regulated kinase (ERK) mediated the basal and oxLDL-stimulated expression of MMP-1, and quercetin is a potent inhibitor of ERK, suggesting that quercetin may inhibit MMP-1 expression by blocking the ERK pathway. Finally, we showed that quercetin stimulated tissue inhibitor of metalloproteinase-1 expression in oxLDL- and PMA-treated cells. In conclusion, the present study demonstrated for the first time that quercetin inhibited MMP-1 expression in vascular endothelial cells, suggesting that quercetin might contribute to plaque stabilization.  相似文献   

12.
Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury.  相似文献   

13.
14.
15.
Zymography and in situ hybridizition were used to investigate matrix metalloproteinase-2, -9 (MMP-2, -9) activities, and expression of mRNAs for MMP-2, -9 and tissue inhibitors of matrix metalloproteinases (TIMP-1, -2, -3) in the rat uterus during early pregnancy (day 1-7). The zymography results showed two forms of MMP-2 (64 and 67 kDa) in the rat uteri during early pregnancy. The 64-kDa MMP-2 activity was the highest on day 2 (P < 0.01) and higher on day 5 and 6 (P < 0.05). The 67-kDa MMP-2 activity reached the highest on day 5 and 6 (P < 0.01). The 64-kDa MMP-2 activity at the implantation sites was higher than those at interimplantation sites (P < 0.05). Furthermore, the 67 kDa MMP-2 can be converted to 64 kDa forms by incubation with p-aminophenylmercuric acetate (APMA) and trypsin in vitro. The 92-kDa MMP-9 activity was only detected on day 5 and 6 of pregnancy (P < 0.01). In situ hybridization showed that on day 1-4 of pregnancy, both MMP-2 and TIMP-2 mRNAs were evidently localized in the basal stromal cells. On day 5, MMP-2 mRNA signals were decreased in the basal stromal cells and mRNA for TIMP-2 was expressed in the epithelial cells and subepithelial stromal cells. The mRNAs for MMP-9, TIMP-1, and -3 were mainly expressed in epithelial cells on day 1-5. At the implantation site on day 6, the mRNAs for MMP-2, -9, TIMP-1, -2, and -3 were highly expressed in the primary decidual zone surrounding the implanting embryo, and in the whole decidualized stromal cells (the primary and secondary decidual zones) at the implantation site on day 7. The intensities of mRNAs for the TIMPs in decidualized stromal cells at the implantation site on day 6 and 7 were stronger than those for the MMPs. The weak mRNAs for MMP-2, -9, TIMP-1, and -3 but not TIMP-2 were also observed in the ectoplacental cone/trophoblastic cells of the implanting embryos. However, at the interimplantation sites on day 6 and 7, MMP-2, -9, TIMP-1, -2, and -3 mRNAs were weakly expressed in the epithelial cells, subepithelial stromal cells, and myometrium. The results suggested that the implanting rat embryo strongly induced MMP-2 and -9 proteins and gene expression for decidulization and embryo invasion, which were strictly controlled and balanced by the simultaneous expression of TIMP-1, -2 and -3.  相似文献   

16.
17.
18.
The expression of matrix metalloproteinases (MMPs) produced by cancer cells has been associated with the high potential of metastasis in several human carcinomas, including breast cancer. Several pieces of evidence demonstrate that protein tyrosine phosphatases (PTP) have functions that promote cell migration and metastasis in breast cancer. We analyzed whether PTP inhibitor might control breast cancer invasion through MMP expression. Herein, we investigate the effect of 4-hydroxy-3,3-dimethyl-2H benzo[g]indole-2,5(3H)-dione (BVT948), a novel PTP inhibitor, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. The expression of MMP-9 and cell invasion increased after TPA treatment, whereas TPA-induced MMP-9 expression and cell invasion were decreased by BVT948 pretreatment. Also, BVT948 suppressed NF-κB activation in TPA-treated MCF-7 cells. However, BVT948 didn’t block TPA-induced AP-1 activation in MCF-7 cells. Our results suggest that the PTP inhibitor blocks breast cancer invasion via suppression of the expression of MMP-9. [BMB Reports 2013; 46(11): 533-538]  相似文献   

19.
Lysyl oxidase (LOX) is the extracellular enzyme that initiates the main pathway of collagen and elastin cross-linking. LOX has also been correlated with the ras recision gene, a putative tumour suppressor isolated from revertants of ras-transformed fibroblasts. The present study investigates the potential correlation of LOX-dependent matrix protein cross-linking in the stromal reaction of lung carcinomas, with reference to the architecture of the main stromal reactions accompanying the neoplastic breast tissues. A strong LOX expression was associated with the hypertrophic scar-like stromal reaction found at the front of tumour progression in squamous carcinomas, adenocarcinomas, large cell carcinomas, or at sites of initial extense in bronchiolo-alveolar carcinomas. In contrast, little or no LOX expression was found within the stromal reaction of invasive carcinomas, small cell carcinomas, and neuro-endocrine carcinomas. The significance of LOX expression and of the stromal reaction are discussed, in light of data that associate LOX expression with tumours displaying a rather good prognosis.  相似文献   

20.
The gene coding for human collagenase-3 (CLG3), a recently described matrix metalloproteinase produced by breast carcinomas, has been localized by fluorescence in situ hybridization on chromosome 11q22.3. Physical mapping of an isolated YAC clone containing CLG3 has revealed that this gene is tightly linked to those encoding other matrix metalloproteinases, including fibroblast collagenase (CLG1), stromelysin-1 (STMY1), and stromelysin-2 (STMY2). Further mapping of this region using pulsed-field gel electrophoresis has shown that the CLG3 gene is localized to the telomeric side of the matrix metalloproteinase cluster, the relative order of the loci being centromere—STMY2—CLG1—STMY1—CLG3—telomere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号