首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the presence of exogenous dolichyl phosphate mannosyl transferase activity towards dolichyl phosphate was nearly 3-fold higher in microsomes from pig embryonic liver compared to that from adult liver. After incubation of microsomes from embryonic liver with UDP-N-acetylglucosamine and GDP-[14C]mannose lipid-linked tri- to undecasaccharides were discovered in CHCl3-CH3OH (2:1, v/v) and CHCl3-CH3OH-H2O (1:1:0.3, by vol) extracts. The main proportion of the radioactivity was incorporated into penta-, sexta and undecasaccharides. Amphomycin at concentration 500 micrograms/ml inhibited almost completely dolichyl phosphate mannose synthesis in embryonic liver microsomes without inhibition the formation of lipid-linked penta- and sextasaccharides. It was suggested that mannose transferred to lipid-linked tetra- to heptasaccharides comes from GDP-mannose but not from dolichyl phosphate mannose.  相似文献   

2.
The effect of alpha-dihydrodecaprenyl phosphate, dolichyl phosphate and solanesyl phosphate on the lipid intermediate pathway for protein glycosylation was studied with crude membrane fraction prepared from AH 70Btc hepatoma cells. alpha-Dihydrodecaprenyl phosphate increased the incorporations of [14C]mannose from GDP-[14C]mannose into CHCl3-CH3OH (2:1, v/v) extract, oligosaccharide-lipid and proteins. The above and the other data showed that alpha-dihydrodecaprenyl phosphate may function as a mannose carrier in the lipid intermediate pathway.  相似文献   

3.
采用硅胶、RP-18、Sephadex LH-20等多种材料进行分离纯化,通过理化方法和波谱分析进行结构鉴定,从虎皮小牛肝菌(Boletinus pictus)子实体的氯仿/甲醇(1:1,v/v)提取部位中分离并鉴定了9个化合物,它们分别为:亚油酸甲酯(1)、9(Z)-十八烷烯酸(2)、麦角甾-5,7,22-三烯-3β-醇(3)、麦角甾-4,6,8(14),22-四烯-3-酮(4)、麦角甾-7,22-二烯-3β,5α,6β,9α-四醇(5)、邻苯二甲酸二丁酯(6)、邻苯二甲酸二异丁酯(7)、烟酰胺(8)和尿嘧啶核苷(9).所有化合物均是首次从虎皮小牛肝菌中得到.  相似文献   

4.
1. The transfer of mannose from GDP-(U-14-C)mannose into endogenous acceptors of bovine adrenal medullla and rat parotid was studied. The rapidly labelled product, a glycolipid, was partially purified and characterized. 2. It was stable to mild alkaline hydrolysis but yielded (14-C)mannose on mild acid hydrolysis. It co-chromatographed with mannosyl phosphoryl dolichol in four t.l.c. systems and on DEAE-cellulose acetate. Addition of dolichol phosphate or a dolichol phosphate-enriched fraction prepared from pig liver stimulated mannolipid synthesis. 3. The formation of mammolipid appeared reversible, since addition of GDP to a system synthesizing the mannolipid caused a rapid loss of label from the mannolipid. UDP-N-acetylglucosamine did not inhibit mannolipid synthesis except at high concentrations (2 mM), even though in the absence of GDP-mannose, N-acetylglucosamine was incorporated into a lipid having the properties of a glycosylated polyprenyl phosphate. 4. Mannose from GDP-mannose was also incorporated into two other acceptors, (2y being insoluble in chloroform-methanol (2:1, v/v) but soluble in choloroform-methanol-water (10:10:3, by vol.) and (ii) protein. These are formed much more slowly than the mannolipid. 5. Exogenous mannolipid served as a mannose donor for acceptors (i) and (ii), and it is suggested that transfer of mannose from GDP-mannose to mannosylated protein occurs via two intermediates, the mannolipid and acceptor (i).  相似文献   

5.
1. The incorporation of d-[1-(14)C]mannose, d-[2-(3)H]mannose and N-acetyl-d-[1-(14)C]-glucosamine into glycoproteins and lipid-linked intermediates of mammary explants obtained from lactating rabbits was studied. The amount of radioactivity incorporated into lipid-linked intermediates was very low compared with the incorporation into protein. Most of the radioactivity incorporated into the chloroform/methanol-soluble fraction was present as neutral lipid. Radioactivity from d-[2-(3)H]mannose was incorporated mainly into the fatty acid moiety, whereas radioactivity from d-[1-(14)C]mannose and N-acetyl-d-[1-(14)C]glucosamine was present in the glycerol moiety of triacylglycerol. 2. The labelled lipid-linked intermediate that was soluble in chloroform/methanol/water (10:10:3, by vol.) was partially characterized and was found to exhibit properties characteristic of an oligosaccharide linked to lipid via a pyrophosphate bridge. It migrated largely as a single zone of radioactivity on t.l.c. and was eluted from a column of DEAE-cellulose acetate as a single peak by 50mm-ammonium acetate. 3. The oligosaccharide moiety was released from the lipid by mild acid hydrolysis. The size of the oligosaccharide was estimated by paper chromatography to be 10 or 11 monosaccharide units. 4. d-[1-(14)C]Mannose was incorporated largely into glycopeptides with molecular weights in the range 40000-80000, as determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. Label from N-acetyl-d-[1-(14)C]glucosamine was incorporated into a glycopeptide with an electrophoretic mobility identical with that of rabbit casein (mol.wt. 32000) as well as into glycopeptides of higher molecular weight. 5. Approx. 50% of the total radioactivity in the protein labelled from N-acetyl-d-[1-(14)C]glucosamine was present as galactosamine, a component of the carbohydrate portion of rabbit casein. No labelled galactosamine was present in the lipid-linked oligosaccharide labelled from N-acetyl-d-[1-(14)C]glucosamine. It thus appears that the lipid-linked oligosaccharide is not involved in the glycosylation of casein.  相似文献   

6.
This study identifies and partially characterizes an insulin-sensitive glycophospholipid in H35 hepatoma cells. The incorporation of [3H]glucosamine into cell lipids was investigated. A major labeled lipid was purified by sequential thin layer chromatography using first an acid followed by a basic solvent system. After hydrochloric acid hydrolysis and sugar analysis by thin layer chromatography, 80% of the radioactivity in the purified lipid was found to comigrate with glucosamine. H35 cells were prelabeled with [3H]glucosamine for either 4 or 24 h and treated with insulin causing a dose-dependent stimulation of turnover of the glycophospholipid which was detected within 1 min. The purified glycolipid was cleaved by nitrous acid deamination indicating that the glucosamine C-1 was linked to the lipid moiety through a glycosidic bond. [14C]Ethanolamine, [3H]inositol, and [3H]sorbitol were not incorporated into the purified glycolipid. The incorporation of various fatty acids into this glycolipid was also studied. [3H]Palmitate was found to be preferentially incorporated while myristic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid were either not incorporated or incorporated less than 10% of palmitate. The purified glycolipid labeled with [3H]palmitate was cleaved by treatment with phospholipase A2 but was resistant to mild alkali hydrolysis suggesting the presence of a 1-hexadecyl,2-palmitoyl-glyceryl moiety in the purified lipid. Treatment of labeled glycophospholipid with phosphatidylinositol-specific phospholipase C from Staphylococcus aureus generated a compound migrating as 1-alkyl,2-acyl-glycerol and a polar head group with a size in the range from 800 to 3500. These findings coupled with the nitrous acid deamination demonstrate that glucosamine was covalently linked through a phosphodiester bond to the glyceryl moiety of the purified glycolipid. These findings suggest that insulin acts on this glycophospholipid by stimulating an insulin-sensitive phospholipase C. This unique glycophospholipid may play an important role in insulin action by serving as precursor of insulin-generated mediators.  相似文献   

7.
Calf pancreas microsomes incorporated radioactive D-mannose from GDP-D-[14C]mannose into lipid-bound oligosaccharides extracted with chloroform/methanol/water (10/10/2.5, v/v). Several products, which probably differed in the size of the oligosaccharide moiety, were labeled. These could be partially resolved by thin layer chromatography and DEAE-cellulose chromatography. The labeled lipid-bound oligosaccharides were retained on DEAE-cellulose more strongly than synthetic dolichyl alpha-D-[14C]mannopyranosyl phosphate. They were stable to mild alkali, but labile to acid and hot alkali. Acid treatment yielded a neutral 14C-labeled oligosaccharide fraction which was estimated by gel filtration to have a minimum of 8 monosaccharide residues. Hot alkali treatment yielded a mixture of neutral and acidic 14C-labeled oligosaccharides which could be transformed into neutral products by alkaline phosphatase. The D-[14C]mannose residues were alpha-linked at the nonreducing terminus of the oligosaccharides since they could be removed completely with alpha-mannosidase. Most of the D-[14C]mannose-labeled oligosaccharides were retained on concanavalin A Sepharose and eluted with methyl alpha-D-mannopyranoside. Pancreatic dolichyl beta-D-[14C]mannopyranosyl phosphate incubated with calf pancreas microsomes in the presence of sodium taurocholate was efficiently utilized as donor of alpha-D-mannosyl residues in lipid-bound oligosaccharides. The products formed from dolichyl beta-D-[14C]mannopyranosyl phosphate were identical with those formed from GDP-D-[14C]mannose, and evidence was obtained to show that the dolichyl beta-D-[14C]mannopyranosyl phosphate was serving as donor without prior conversion to GDP-D-[14C]mannose. Transfer of mannose from dolichyl beta-D-[14C]mannopyranosyl phosphate to lipid-bound oligosaccharides took place at a pH optimum of 7.3, whereas transfer to the precipitate containing glycoproteins was greatest at pH 6.0 in Tris/maleate buffer. The addition of divalent cation was not required, but low concentrations of EDTA were extremely inhibitory. The carbohydrate composition of the lipid-bound oligosaccharides of microsomal membranes was investigated by gas-liquid chromatography and by reduction with sodium borotritide. A heterogeneous mixture of oligosaccharides containing N-acetyl-D-glucosamine, D-mannose, and D-glucose varying in proportions from approximately 1/2.5/0.5 to 1/5/1.5 was obtained with glucosamine at the reducing end. Acid treatment of the lipid-bound oligosaccharide fraction yielded dolichyl pyrophosphate, suggesting that at least some of the oligosaccharides were linked to dolichol through a pyrophosphate group.  相似文献   

8.
A particulate membrane preparation fromSaccharomyces cerevisiae catalyzed the incorporation of mannose from GDP-mannose into lipids that were extractable in chloroform-methanol. One lipid has been previously characterized as dolichyl phosphomannose. Another one was purified by chromatography on silicic acid, DEAE-cellulose and Sephadex LH-20 and found to be alkali unstable. The lipid moiety was shown to be dolichol and the glycosydic part contained mannose, glucose and glucosamine.Radioactive mannose was also incorporated at a slower rate into more polar compounds. They were soluble in chloroform-methanol-water and were seen to liberate neutral oligosaccharides after alkaline hydrolysis.Radioactive mannose was also incorporated into substances which behave chemically as glycoproteins since they were insoluble in organic solvents, water and trichloroactic acid. Pronase treatment of the trichloroacetic acidinsoluble material released water-soluble oligosaccharides.When the particulate preparation which had been extracted with chloroform-methanol at –20 C, was incubated with GDP-(U-14C)mannose, radioactivity was incorporated into glycolipids that were soluble in chloroform-methanol-water and into glycoproteins. This result suggests that at least part of the mannose was transferred to endogenous acceptors independent of dolichyl phosphomannose.  相似文献   

9.
A particulate fraction from porcine aorta catalyzed the incorporation of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc into both GlcNAc-pyrophosphorylpolyprenol and GlcNAc-GlcNAc-pyrophosphorylpolyprenol. This transfer utilized endogenous lipid and required a divalent cation. Mn2+ was the best metal ion and was optimum at 2.3 mM. This same particulate fraction was previously shown to transfer mannose from GDP-[14C]mannose to endogenous lipid to form mannosylphosphorylpolyprenol (Chambers, J., and Elbein, A.D. (1975) J. Biol. Chem. 250, 6904-6915). Both the GlcNAc activities and the mannose activity were solubilized by treatment of the particulate fraction with the detergent Nonidet P-40. The enzymes were partially purified by chromatography on DEAE-cellulose and on Sephadex G-200. These soluble enzymes required the addition of acceptor lipid for activity. An acidic lipid fraction, isolated from pig liver and having the properties of dolichyl phosphate, was active with either the GlcNAc or the mannose transferase. Chemically synthesized dolichyl phosphate was also active with either of these enzymes. The products formed from either GlcNAc or mannose by the soluble transferases were similar to those formed by the particulate enzyme. Thus the major product formed from UDP-[3H]GlcNAc was GlcNAc-pyrophosphoryldolichol with small amounts of the disaccharide-lipid while the product formed from GDP-[14C]mannose was mannosylphosphoryldolichol.  相似文献   

10.
Chicken embryo fibroblasts (C/E phenotype) infected with subgroups B and C of the Prague strain of Rous sarcoma virus were radiolabeled with either [6-(3)H]-glucosamine or [2-(3)H]mannose, and virus was purified from the growth medium. The large envelope glycoprotein, gp85, was the only major radiolabeled component of purified virus. Pronase-digested glycopeptides from purified virus were analyzed by a combination of (i) gel filtration with columns of Sephadex G15/G50 and Bio-Gel P4 and (ii) enzymatic digestion of the oligosaccharide chains with specific exoglycosidases and endo-beta-N-acetylglucosaminidases. The rather broad molecular weight distribution (approximately 2,000 to 4,000) for glycopeptides in these studies and previous studies in other laboratories was shown to represent actual heterogeneity in the carbohydrate moieties: (i) the glycopeptides contained both mannose-rich, neutral chains and complex, acidic chains with terminal sialic acid; and (ii) both classes of asparagine-linked carbohydrate structures exhibited heterogeneity in the size of the oligomannosyl core (a mixture of approximately 5 to 9 mannose units for the neutral structures, and 3 or 5 mannose units for the acidic structures). With the [2-(3)H]mannose-labeled glycopeptides from Rous sarcoma virus, Prague strain subgroup C, most of the oligosaccharide chains were high-molecular-weight, acidic structures, with similar numbers of 3-mannose and 5-mannose core structures.  相似文献   

11.
Expression of an unusual acidic glycoconjugate in Leishmania donovani   总被引:12,自引:0,他引:12  
An acidic glycoconjugate containing mannose, galactose and phosphate in approximately equimolar amounts was extracted from Leishmania donovani promastigotes and partially characterized. The glycoconjugate could be metabolically labeled with either [3H]mannose or [3H]galactose and was extractable from a delipidated residue fraction with water/ethanol/diethyl ether/pyridine/concentrated NH4OH (15:15:5:1:0.017) at 25 degrees C. The radioactively labeled glycoconjugate was found to possess the following characteristics: 1) comprised 45-60% of the total [3H]mannose label incorporated into macromolecules; 2) was soluble in alkaline solvents and 0.5% Triton X-100; 3) migrated as a broad band upon electrophoresis on sodium dodecyl sulfate-polyacrylamide gels with an approximate molecular weight of 15,000-30,000; 4) bound to DE52 cellulose and was eluted with a salt gradient of 0-0.1 M NaCl; 5) was insensitive to Pronase, hyaluronidase, chondroitinase, endo-beta-N-acetylglucosaminidase H, and endo-beta-galactosidase; and 6) possessed hydrophobic properties. An unusual feature of the glycoconjugate was its lability to mild acid hydrolysis (0.02 N HCl, 15 min, 60 degrees C). As determined by alkaline phosphatase and glycosidase digestion and paper chromatographic analysis, the major fragment generated by mild acid hydrolysis was found to be a phosphorylated galactosyl-beta-mannose disaccharide. All of these characteristics suggest that the glycoconjugate may be a polysaccharide and, possibly, may be important in parasite-host cell interactions.  相似文献   

12.
When a membrane preparation from the lactating bovine mammary gland is incubated with GDP-[14C] mannose, mannose is incorporated into a [14C] mannolipid, a [Man-14C] oligosaccharide-lipid, and metabolically stable endogenous acceptor(s). The rate of mannosyl incorporation is the fastest into [14C] mannolipid, intermediate in [Man-14C] oligosaccharide-lipid, and least into [Man-14C] endogenous acceptor(s). The [14C] mannolipid has been partially purified and characterized. Mild acid hydrolysis of this compound gives [14C] mannose, whereas alkaline hydrolysis yielded [14C] mannose phosphate as the labeled product. The t½ of hydrolysis of the mannolipid under the acidic and basic conditions are comparable to values obtained for mannosyl phosphoryl dolichol in other systems. The mannolipid is chromatographically indistinguishable from calf brain mannosyl phosphoryl polyisoprenol and chemically synthesized β-mannosyl phosphoryl dolichol. Exogenous dolichol phosphate stimulates the synthesis of mannolipid in mammary particulate preparations 8.5-fold. Synthesis of mannolipid is freely reversible; in the presence of GDP, the transfer of mannosyl moiety from endogenously labeled mannolipid to GDP-mannose is obtained. All of these results indicate that the structure of mannolipid is mannosyl phosphoryl polyisoprenol. Even though the precise chain length of the polyisoprenol portion has not been established, it is tentatively suggested to be dolichol. Partially purified [14C] mannolipid can directly serve as a mannosyl donor in the synthesis of [Man-14C] oligosaccharide-lipid and [Man-14C] endogenous acceptor(s). Pulse and chase kinetics utilizing GDP-mannose to chase the mannosyl transfer from GDP-[14C] mannose in the mammary membrane incubations caused an immediate and rapid turnover of [14C] mannose from [14C] mannolipid while the incorporation of label in [Man-14C] oligosaccharide-lipid and radioactive endogenous acceptor(s) continued for a short period before coming to a halt. Both gel filtration and electrophoresis indicate that the endogenous acceptor(s) are a mixture of 2 or more glycoproteins since incubation with proteases releases all of the radioactivity into water soluble low-molecular-weight components, perhaps glycopeptides. All of the above evidence is consistent with the following precursor-product relationship: GDP-mannose ? mannosyl phosphoryl polyisoprenol → mannosyl-oligosaccharide-lipid → mannosyl-proteins. The exact structure of the oligosaccharide-lipid and the endogenous glycoproteins is unknown.  相似文献   

13.
Developing pea cotyledons incorporate radioactivity in vivo from [14C]glucosamine and [14C]mannose into glycolipids and glycoproteins. Several different lipid components are labeled including neutral, ionicnonacidic, and acidic lipids. The acidic lipids labeled in vivo appear similar to the polyisoprenoid lipid intermediates formed in vitro in pea cotyledons. Radioactivity from [14C]glucosamine and [14C]mannose is also incorporated into glycopeptides. Considerable redistribution of [14C]mannose into other glycosyl components found in endogenous glycoproteins is observed. An N-acetylglucosamine to asparagine glycopeptide linkage has been isolated from [14C]glucosamine-labeled glycoproteins.  相似文献   

14.
Mitochondria, and specially outer mitochondrial membranes, incorporate D-[14C]glucose from UDP-D-[14C]glucose into products extracted with organic solvents and into a residual precipitate, with a pH optimum of about 6.5 in (2-N-morpholino-ethane)-sulfonic acid (MES) buffer. The chloroform/methanol (2:1, v/v) extract contains two products. The major [14C]glucolipid is stable to mild alkali, but releases [14C]glucose upon mild acid hydrolysis. It is retained on DEAE-cellulose (acetate form) and is eluted with the same ionic strength as an hexosyldolichyl monophosphate diester. This [14C] glucolipid has the same chromatographic behaviour as dolichyl-mannosylphosphate in neutral, acidic and basic solvent systems; and its biosynthesis is greatly increased by exogenous dolichylmonophosphate. The other [14C]glucolipid is stable upon mild acid hydrolysis and is not retained on DEAE-cellulose. On silicic acid it is eluted with acetone. The biosynthesis of this compound is stimulated by exogenous ceramide. This glucolipid has the same chromatographic mobility in different solvent systems as glucosylceramide isolated from the liver of a patient with Gaucher's disease. Biosynthesis of these two glucolipids is inhibited by UDP, but only biosynthesis of dolichylglucosyl monophosphate is reversible with this nucleotide. The biosynthesis of these different glucosylated derivatives is stimulated by the addition of divalent cations (Mn2+, Mg2+). the effect of these two metal ions on dolichylglucosyl monophosphate and glucosylceramide formation is studied in different conditions.  相似文献   

15.
Author index     
About ScienceDirect 《BBA》1982,682(3):369-371
The membrane-bound ATPase activity of Bacillus subtilis was inhibited by dicyclohexylcarbodiimide (DCCD). The DCCD-reactive proteolipid of B. subtilis was extracted, from labelled or untreated membranes containing F1 or depleted of F1, with neutral or acidic chloroform/methanol. Purification of the [14C]DCCD-binding proteolipid was attempted by column chromatography on methylated Sephadex G-50 and on DEAE-cellulose. The maximal amount of DCCD which could be bound to the purified proteolipid was found to exceed the amount bound by the purified proteolipid extracted from membranes labelled with the lowest [14C]DCCD concentration required for maximal inhibition of the membrane-bound ATPase activity. The radioactive protein peaks eluted by gel filtration and ion-exchange chromatography were analysed by urea-SDS polyacrylamide slab gel electrophoresis and autoradiography. Radioactivity was incorporated into two components of Mr 18 000 and 6000 when proteolipid was purified by methylated Sephadex. The 6000 polypeptide was always present, whatever the extraction and purification procedures. However, the 18 000 polypeptide was present in largest quantity only when proteolipid was extracted from membranes containing F1 and purified by methylated Sephadex. When proteolipid was purified on DEAE-cellulose this [14C]DCCD binding component of Mr 18 000 was absent.  相似文献   

16.
The glycophosphosphingolipids of Tritrichomonas foetus, an aerotolerant parasite of the urogenital tract of cattle, have been characterized by a combination of metabolic labeling, chromatography, and tandem mass spectrometry. The acidic glycolipid fraction of T. foetus obtained by DEAE Sephadex A-25 column chromatography was subfractionated by high performance thin layer chromatography and the component lipids were purified by high performance liquid chromatography. Two nonsaponifiable lipid fractions, designated TF1 and TF2, could be metabolically labeled with [3H]myoinositol and [32P]orthophosphate. [3H]Fucose and [14C]ethanolamine were preferentially incorporated into the TF1 fraction. TF1 was partially hydrolyzed by alpha-fucosidase. Both TF1 and TF2 contain ceramides, the most abundant having either sphinganine or sphingosine and a 16:0 N-acyl group. TF2 contains inositolphosphoceramides. TF1, on the other hand, contains three closely related components, in each of which fucose is linked to inositol diphosphate with one of the phosphates linked to the ceramide moiety and the other phosphate either free or linked to ethanolamine or N-acetylethanolamine. TF1 appears to be a novel class of glycophosphosphingolipid which shows some structural similarities to the glycosylphosphatidylinositol anchors of eukaryotic membrane proteins.  相似文献   

17.
This is the first report establishing the existence of glycolipids synthesized by plasmodia, in particular Plasmodium falciparum. Trophozoites, schizonts, gametocytes, and gametes were metabolically labeled in vitro with [3H]glucosamine, [3H]galactose, [3H]glucose, [3H]mannose, [3H]fucose, [32P]inorganic phosphate, or [35S]sulfate, and total lipid extracts analyzed by high-performance thin-layer chromatography and autoradiography or fluorography. Parasites incorporated [3H]monosaccharides into distinctly different series of molecules previously undescribed. Three properties of [3H]glucosamine labeled molecules indicate they are glycolipids. First, labeled molecules have lipid solubility properties. Second, mobility on thin-layer chromatography was characteristic of glycolipids. Third, following acid hydrolysis, [3H]glucosamine was recovered from a total lipid extract of labeled parasites demonstrating that glucosamine is a constituent of some of these lipid molecules. Most of these glycolipids are neutral and alkali labile. The majority of these glycolipids differs from several synthesized phospholipids. None of these glycolipids was sulfated. Plasmodial glycolipid synthesis occurs concomitantly with glycoprotein synthesis, and both increase during schizogony. Many of these glycolipids appear to be identical among three strains of P. falciparum and between two species, P. falciparum and P. knowlesi. In contrast, there are stage specific differences in glycolipid synthesis among rings, schizonts, gametocytes, and a mixture of gametes plus zygotes of P. falciparum, examples of both erythrocytic and vector forms of the parasite.  相似文献   

18.
5—氟尿苷的微生物转化   总被引:6,自引:0,他引:6  
5 氟尿苷 (简称FUR)是抗肿瘤核苷药物脱氧氟尿苷 (Floxuridine ,简称DFUR)的合成中间体。脱氧氟尿苷是一种抗代谢类抗肿瘤药 ,在体内可以部分转化为氟尿嘧啶 (简称FU) ,二者具有相似的作用途径和抗肿瘤谱。与FU相比 ,由于DFUR的抗肿瘤活性高且毒副反应小 ,主要用于治疗晚期结直肠癌和各种类型肝癌。在国内 ,采用化学法合成的DFUR业已进入临床研究阶段[1]采用化学合成法生产DFUR时 ,由于反应过程中需将碱基或核糖残基的部分基团进行保护 ,而且产物为多种核苷异构体和其它副产品的混合物 ,需要进一步分离 ,…  相似文献   

19.
The radioactive products derived from transfer of [14C]mannose residues from GDP-[14C]mannose to endogenous acceptors of a Hansenula holstii particulate enzyme preparation have been solubilized by Pronase digestion. From this soluble mixture, glycopeptides containing [14C]mannose have been purified and have been shown by β-elimination-reduction experiments to contain radioactive mannose and oligosaccharides of mannose linked to serine and threonine residues. Radioactive macromolecular complexes of mannan-protein were extracted from the particulate enzyme fraction with hot, neutral citrate buffer. These components contained variable quantities of protein, mannose, and phosphate. The more neutral components were reduced in size by Pronase digestion and yielded glycopeptides similar to those obtained by direct Pronase digestion of the particulate fraction.  相似文献   

20.
Membrane preparations from Acer pseudoplatanus suspension cultures were demonstrated to incorporate radioactivity from GDP-[U-14C]mannose and UDP-N-acetyl-[6-(3)H]glucosamine into high-molecular-weight polymers characterized as glycoprotein. From 20 to 25% of the 14C was incorporated as fucose with the remainder as mannose, whereas 90% of the 3H was incorporated as N-acetylglucosamine with the remainder as N-acetylgalactosamine. Pronase digestion yielded radioactive glycopeptides that were separated into four fractions by gel-permeation chromatography and paper electrophoresis. The isolated glycopeptides differed in molecular weight and isotopes incorporated, as well as in amino-acid and monosaccharide composition. The membrane preparation also incorporated radioactivity from the added nucleotides into chloroform/methanol (2:1, v/v)- and chloroform/methanol/water (10:10:3, by vol.)-soluble lipids, and into an insoluble pellet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号