首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract 1. Parasitoids in the genus Trogus (Hymenoptera: Ichneumonidae) attack the larvae of swallowtail butterflies (Lepidoptera: Papilionidae). Only two of the three major tribes of the subfamily Papilioninae are attacked although species of all three tribes commonly occur together. The tribe Troidini is relatively free of parasitoids of any kind, and it has been proposed that the aristolochic acids sequestered by troidines protect them from parasitism.
2. The responses of T. pennator (Fabricius) to the sympatric troidine Battus philenor (Linnaeus) were examined. Three hypotheses that could explain why this wasp does not parasitise B. philenor were considered. (1) Battus philenor does not produce compounds used by the wasp to locate hosts. (2) The larval integument contains compounds that deter attack. (3) The parasitoid offspring cannot survive in B. philenor .
3. The first hypothesis was not supported as the frass of B. philenor larvae was found to act as a searching arrestant comparable to the frass of a host species.
4. The second hypothesis was supported. The B. philenor larvae were rejected when the wasps examined them using their antennae, and ethanolic washes of B. philenor cuticle deterred attack by T. pennator when applied to otherwise acceptable host larvae. Bioassays of fractions of the ethanolic wash and of pure aristolochic acids established that aristolochic acids were at least partly responsible for the deterrent effect.
5. The third hypothesis was also supported. Larvae of B. philenor attacked by the parasitoids developed into butterflies.
6. These results indicate that both behavioural and physiological barriers, the former attributable at least in part to sequestered compounds and the latter of unknown mechanism, prevent T. pennator from parasitising B. philenor .  相似文献   

2.
1. The butterflies Pieris napi and Pieris bryoniae hybridize in a narrow zone at ≈ 1200 m in the Alps and Carpathians of Europe. They feed as larvae on a variety of hosts in the Brassicaceae, and few host species occur on both sides of the hybrid zone.
2. Females were captured on either side of the hybrid zone at Pont de Nant, Switzerland, eggs obtained, and larvae were offered plants from nineteen species of Brassicaceae and Reseda lutea (Resedaceae).
3. Nine of the hosts were found to have eggs or larvae already on them. Only Capsella bursa-pastoris and R. lutea were unsuitable.
4. Significant survivorship differences among suitable hosts were found. There was no interaction between butterfly species and host plant, which would indicate adaptation by these taxa to their respective suites of hosts.
5. Among suitable hosts, larvae of both taxa had higher mortality on plants with hairy leaves and on older plants beginning to senesce.
6. Differential selection on host use, if it occurs at all, is likely to be a very minor factor in the dynamics of the Pieris napi / bryoniae hybrid zone.  相似文献   

3.
凤蝶亚科(凤蝶科,鳞翅目)16S rRNA基因的分子系统发生分析   总被引:2,自引:0,他引:2  
对15种凤蝶亚科蝶类线粒体16S rRNA基因部分序列进行了测定,并结合GenBank中其它相关类群的序列,采用邻接法(NJ)、最大简约法(MP)、最大似然法(ML)和贝叶斯法构建凤蝶亚科的分子系统树,探讨该亚科各类群间的系统发生关系.结果表明,燕凤蝶族构成凤蝶亚科蝶类系统树基部的一个独立分支;燕凤蝶族和裳凤蝶族为单系发生,且裳凤蝶族聚在凤蝶族内部;喙凤蝶族的单系性尚不能确定.综合分子系统学、形态学及寄主植物等相关证据,推测斑凤蝶类为凤蝶族中早期分化的一支;较之裳凤蝶类,斑凤蝶类可能更早从二者最近的共同祖先中分化出来.  相似文献   

4.
Abstract. 1. Female monarchs were observed in the field ovipositing on a native North American milkweek host, Asclepias humistrata L. As in a comparable Australian study on an introduced novel host ( Asclepias fruticosa L.) we found post-alighting rejection of plants with low and high cardiac glycoside concentration (CG).
2. Most oviposition took place on plants with CG in the range 200–500 μg/0.1 g dry weight. Thin-layer chromatography showed no obvious qualitative difference in cardenolide types between accepted and rejected plants, excepting an indication that rejected plants may have a higher level of more polar cardenolides.
3. In a controlled laboratory experiment comparing oviposition on a low ( A.incarnata L.) vs high ( A.curassavica L.) CG host plant species we found no relationship between CG and oviposition on the low CG species, but a negative relationship in the high CG species. This corroborates our findings on oviposition on single host species in the field.
4. We also record the first indication of a physiological cost of monarch larvae feeding on plants high in CG. There was a significant negative relationship between survival of first instar larvae and CG levels in plants. This study opens the way for further work on the association of monarch butterflies and their toxic milkweed hosts.  相似文献   

5.
Abstract. 1. In a laboratory experiment, the influence of host plant diversity and food quality, in terms of nitrogen content, on the larval survival of two oligophagous bug species (Heteroptera, Miridae: Leptopterna dolobrata L., Notostira erratica L.) was investigated. Both species are strictly phytophagous and capable of feeding on a wide range of grass species. Moreover, they typically change their host plants during ontogenesis; it has been suggested that this behaviour is a response to the changing protein content of the hosts.
2. To investigate the importance of host plant diversity for these insects, the development of insects reared on grass monocultures was compared with that on mixtures of four grass species. In addition, the host grasses were grown under two nitrogen regimes to test whether nitrogen content is the key factor determining host plant switching.
3. Both species had a significantly higher survival rate when feeding on several host plants but only L. dolobrata showed a significant response to food nitrogen content. Furthermore, there was no correlation between the nitrogen content of the host plants and the survival rate of N. erratica larvae.
4. The study suggests that at least some Stenodemini need a variety of host plants during larval development but that the level of host plant nitrogen is not the main factor responsible for the observed diversity effect.  相似文献   

6.
Aristolochic acids (AAs) are thought to be responsible for the chemical protection of the aposematic larvae Battus polydamas (L.) (Papilionidae: Troidini) against predators. These compounds are sequestered by larvae from their Aristolochia (Aristolochiaceae) host plants. Studying the role of the chemical protection of the second and fifth instars of B. polydamas against potential predators, we found that the consumption of larvae by the carpenter ant Camponotus crassus Mayr and young chicks Gallus gallus domesticus was dependent on larval developmental stage. Second instars were more preyed upon than fifth instars; however, the assassin bug Montina confusa Stål was not deterred by chemical defences of the fifth instar B. polydamas. Laboratory bioassays with carpenter ants and young chicks using palatable baits topically treated with a pure commercial mixture of AAs I and AAs II in concentrations up to 100 times those previously found in B. polydamas larvae showed no activity. Similar results were found in field bioassays, where palatable baits treated as above were exposed to the guild of predators that attack B. polydamas larvae and were also consumed irrespective of the commercial AA concentration used. These results suggest that the mixture of AAs I and AAs II have no defensive role against predators, at least against those investigated in the present work. Other compounds present in Aristolochia host plants such as O-glycosylated AAs; benzylisoquinoline alkaloids; and mono-, sesqui-, di-, and triterpenes, which can be sequestered by Troidini, could act as deterrents against predators.  相似文献   

7.
Abstract 1. The ways of using host plants were compared among the three Athalia sawflies [ A. japonica (Klug), A. rosae ruficornis Jakovlev, and A. infumata (Marlatt)] feeding on crucifers in Japan to determine whether host specialisation can explain the difference in their life-history traits. The occurrence of their larvae was examined on each crucifer species in the field, and the suitability of each crucifer species for the three successive steps of host use by the sawflies was evaluated: microhabitat selection by adult females, female oviposition, and larval growth.
2. There were 11 species of crucifer in the study area, and A. japonica , A. rosae , and A. infumata used nine, seven, and eight species respectively. Thus, sawfly host ranges overlapped.
3. Adult females of A. japonica , A. rosae , and A. infumata preferred shady clumps of crucifers, sunny clumps of crucifers, and disturbed areas respectively.
4. Unsuitable hosts for larval performance such as Brassica oleracea and Arabis plants were eliminated from the host ranges of the three sawflies.
5. Once they chose microhabitats, the suitability of each host plant for female oviposition and larval growth was similar.
6. Because of the divergent preferences for microhabitats, the host plants that were suitable for all the three steps were restricted to different sets of plants among the sawflies: Cardamine for A. japonica , cultivated crucifers ( Raphanus and Brassica ) for A. rosae , and Rorippa for A. infumata . These plants could be recognised as the respective primary host plants.
7. The spatio-temporal distributions of primary hosts were consistent with and explained the pattern of diapause and migration of each sawfly, suggesting that host specialisation caused their life-history traits to differentiate.  相似文献   

8.
Molecular phylogenetic analyses were conducted to determine relationships and to investigate character evolution for the Troidini/Aristolochia interaction, in an attempt to answer the following questions: (1) what is the present pattern of use of Aristolochia by these butterflies; (2) is the pattern we see today related to the phylogeny of plants or to their chemical composition; (3) can the geographical distribution of Aristolochia explain the host plant use observed today; and (4) how did the interaction between Troidini and Aristolochia evolve? Analyses of character optimization suggest that the current pattern of host plant use of these butterflies does not seem to be constrained by the phylogeny of their food plants, neither by the secondary chemicals in these plants nor by their geographical similarity. The current host plant use in these butterflies seems to be simply opportunistic, with species with a wider geographical range using more species of host plants than those with a more restricted distribution. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 247–261.  相似文献   

9.
1. Aggregative feeding of larvae is widespread in the Lepidoptera, and many hypotheses have been proposed to explain the adaptive significance of this trait. Group feeding occurs disproportionately more in species with aposematic, chemically defended larvae compared with species with cryptic, non‐chemically defended larvae, consistent with the hypothesis that group feeding provides an enhanced aposematic signal to natural enemies. Most species characterised as having chemically defended larvae are cryptic during the first instar, when they are most highly aggregated and most vulnerable to predation. 2. The benefits of group feeding in terms of decreased predation were explored for first‐instar larvae of the pipevine swallowtail, Battus philenor, a species that sequesters aristolochic acids from its Aristolochia host plant and exhibits aposematism in later instars and as adults. We found that groups of larvae with experimentally enhanced aristolochic acid content had significantly lower survivorship due to predation both in the field and in laboratory experiments compared with groups of larvae without enhanced chemical defence. 3. A laboratory experiment found that aristolochic acid does not deter the generalist predator Hippodamia convergens. 4. No evidence was found that was consistent with the hypothesis that group feeding and increased sequestered chemical defence interact to decrease rates of larval mortality in non‐aposematic, first‐instar larvae. Future research on chemical defence, aposematism, and aggregative feeding should continue to appreciate that particular chemical defences and feeding behaviours are not universally effective against all natural enemies.  相似文献   

10.
1 The native range of the Siberian moth extends from the Pacific Ocean (Russian Far East, Japan and Northern Korea) across Siberia, Northern China and Mongolia to the Ural Mountains. At the beginning of the 21st Century, this species was documented west of the Ural Mountains in the Republic of Mari El, indicating range extension toward the west.
2 The Siberian moth has recently been suggested for regulation as a quarantine pest for European and Mediterranean Plant Protection Organization member countries. However, no specific report on European host plants for this pest has been published so far.
3 In the present study, larval host plant choice and performance was tested for the first time on coniferous tree species that are widely distributed and of commercial value in Europe.
4 Based on dual-choice tests on neonates and mortality, developmental duration and relative growth rates of the first- to sixth-instar larvae, we found European larch Larix decidua to be the most suitable host for the moth larvae, whereas European black pine Pinus nigra and Scots pine Pinus sylvestris were the poorest hosts. The remaining conifer species tested, European silver fir Abies alba , Nordmann fir Abies nordmanniana , and Norway spruce Picea abies , were intermediate host plants. Douglas-fir Pseudotsuga menziesii , originating from North America, was chosen by the larvae to the same extend as European larch, and was also highly suitable for larval development.
5 If the moth is introduced to European countries, it will become damaging in stands of European larch and Douglas-fir, mixed stands of fir and spruce; however, it will be less damaging in forests dominated by two-needle pines.
6 We predict that Dendrolimus superans sibiricus will be able to survive and develop on the main European coniferous tree species, including non-native coniferous tree species, resulting in severe damage to large areas of forests.  相似文献   

11.
Abstract.  1. Introduced insects often incorporate native plants into their diets and might be expected to show a predilection for novel hosts that are phylogenetically related to their normal hosts. The lily leaf beetle, Lilioceris lilii (Coleoptera: Chrysomelidae), is an introduced pest of cultivated lilies. Oviposition behaviour, larval behaviour, and development of L. lilii was examined on a range of potential host plants, as well as on the normal host, Asiatic hybrid lilies Lilium sp.
2. Neonate larval feeding behaviour was quantified on 15 food plant species: 10 from the Liliales, three from the Asparagales and two eudicots. Larvae fed plants closely related to the genus Lilium were more likely to initiate feeding, less likely to abandon their food leaf, and consumed more leaf area.
3. In no-choice tests, females oviposited on the novel hosts Lilium philadelphicum , Medeola virginiana , Clintonia borealis , Streptopus amplexifolius , and Polygonatum biflorum ; however, all but L. philadelphicum received very few eggs. Non- Lilium novel hosts were not used for oviposition when presented along with Asiatic lilies in choice tests.
4. A single individual was reared to the adult stage on the novel host S. amplexifolius . Several larvae survived to the pupal stage on M. virginiana , although no adults emerged from those pupae. Larvae reared on the native wood lily L. philadelphicum performed equally well or better than on the Asiatic cultivar.
5. Our results indicate that the lily leaf beetle poses a threat to native Liliaceae. Several native Lilium species, including L. philadelphicum , are threatened or endangered in certain jurisdictions throughout their range; these species should be monitored closely for colonisation by the beetle.  相似文献   

12.
Abstract. 1. We classified the parasitoids of 185 British herbivorous insect species as being koinobionts (which should tend to be specialists) or idiobionts (potential generalists) to examine the influences of host feeding-niche and foodplant type on the numbers of parasitoid species attacking individual host species.
2. The majority of parasitoid species of exophytic hosts are koinobionts, whereas endophytic hosts support mainly idiobionts.
3. Parasitoid assemblage size increases with host foodplant size and complexity; for endophytic hosts this is due to an increase in idiobionts on hosts on large plants, but for exophytic hosts it is the number of koinobionts that increases with foodplant size.
4. Comparison of these patterns with those predicted under a competition hypothesis suggests that parasitoid communities associated with endophytic hosts may be commonly limited by interspecific competition, whereas those of exophytic hosts probably are not.  相似文献   

13.
Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is ??invisible to natural selection?? because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore??s chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval foraging behavior and development compared to plant chemical defenses.  相似文献   

14.
Abstract.  1. Host plant preferences of the female diamondback moth Plutella xylostella were studied.
2. Female moths preferred conspecific-damaged cabbage plants over undamaged cabbage plants. The performance of P. xylostella larvae on conspecific-infested plants did not differ significantly from that of larvae on undamaged plants.
3.  Cotesia plutellae , the specialist parasitoid wasp of P. xylostella larvae, displayed equal preference for plants with differing levels of host-larvae damage, and the wasp attacked only one or two hosts on average before leaving an infested plant, irrespective of the number of hosts on the plant. It is hypothesised that the oviposition preferences of P. xylostella females for host plants already damaged by conspecific larvae demonstrate an encounter–dilution effect against C. plutellae .  相似文献   

15.
Abstract. 1. In laboratory tests, first instar gypsy moths attempted dispersal more frequency when exposed to less acceptable foliage.
2. First instars from small eggs attempted dispersal less frequently than larvae from large eggs when exposed to foliage from highly acceptable or marginally acceptable hosts. Dispersal rates of larvae from medium sized eggs were intermediate.
3. These results (1–2) confirm and expand upon the findings of Capinera & Barbosa (1976).
4. In the field, data on the relative densities of larvae on different host species support the conclusion that the frequency of dispersal attempts is inversely related to host acceptability.
5. The implications of these findings for the population dynamics of the gypsy moth are discussed.  相似文献   

16.
Nearly all plants possess chemicals that are inferred to play a role in anti‐herbivore defense or resistance. The effects of various chemical defenses can vary among herbivores. Often, plant defensive compounds are examined in broad, inclusive categories, with an emphasis on total quantity, which might ignore qualitative variation in activity. Aristolochic acids are alkaloids characteristic of plants of the genus Aristolochia (Aristolochiaceae). Although aristolochic acids have been documented as effective herbivore deterrents, it remains unknown whether different kinds of aristolochic acid vary in their efficacy as defense against herbivores. We manipulated the aristolochic acid content of artificial diet to examine the effects of four aristolochic acids on larval preference and performance of the generalist herbivore Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Using choice tests, we observed that the four aristolochic acids tested varied in their deterrent effectiveness, with AA‐I having the strongest effect and AA‐II having the weakest effect. No‐choice tests were used to examine larval performance. The effect on performance varied among the aristolochic acids tested. Higher concentrations of aristolochic acid were generally associated with reduced larval developmental rate and larger size at pupation. These results indicate that various forms of aristolochic acid can vary in their effect on herbivores and that simple aggregate measures of total concentration might not reflect the chemical defensive phenotype of the plant.  相似文献   

17.
In order to better understand the maintenance of a fairly narrow diet breadth in monarch butterfly larvae, Danaus plexippus L. (Lepidoptera: Nymphalidae: Danainae), we measured feeding preference and survival on host and non-host plant species, and sensitivity to host and non-host plant chemicals. For the plant species tested, a hierarchy of feeding preferences was observed; only plants from the Asclepiadaceae were more or equally preferred to Asclepias curassavica, the common control. The feeding preferences among plant species within the Asclepiadaceae are similar to published mean cardenolide concentrations. However, since cardenolide data were not collected from individual plants tested, definitive conclusions regarding cardenolide concentrations and plant acceptability cannot be made. Although several non-Asclepiadaceae were eaten in small quantities, all were less preferred to A. curassavica. Additionally, these non-Asclepiadaceae do not support continued feeding, development, and survival of first and fifth-instar larvae. Preference for a host versus a non-host (A. curassavica versus Vinca rosea) increased for A. curassavica reared larvae as compared to diet-reared larvae suggesting plasticity in larval food preferences. Furthermore, host species were significantly preferred over non-host plant species in bioassays using a host plant or sucrose as a common control. Larval responses to pure chemicals were examined in order to determine if host and non-host chemicals stimulate or deter feeding in monarch larvae. We found that larvae were stimulated to feed by some ubiquitous plant chemicals, such as sucrose, inositol, and rutin. In contrast, several non-host plant chemicals deterred feeding: caffeine, apocynin, gossypol, tomatine, atropine, quercitrin, and sinigrin. Additionally the cardenolides digitoxin and ouabain, which are not in milkweed plants, were neutral in their influence on feeding. Another non-milkweed cardenolide, cymarin, significantly deterred feeding. Extracts of A. curassavica leaves were tested in bioassays to determine which components of the leaf stimulate feeding. Both an ethanol extract of whole leaves and a hexane leaf-surface extract are phagostimulatory, suggesting the involvement of both polar and non-polar plant compounds. These data suggest that the host range of D. plexippus larvae is maintained by both feeding stimulatory and deterrent chemicals in host and non-host plants.  相似文献   

18.
In nature, most species of Lepidoptera are attacked by parasitoids, and some species may be hosts for several parasitoid species. When hosts are parasitized by more than one female of the same species (=superparasitism) or females of different species (=multiparasitism), then intrinsic competition occurs for control of host resources. To reduce competition, some parasitoids are able to recognize the difference between parasitized and unparasitized hosts. Inter- and intra-specific host discrimination were investigated in the two sympatric species, the gregarious Cotesia kariyai (Watanabe) and solitary Meteorus pulchricornis (Wesmael), endoparasitoids of the Oriental armyworm Mythimna separata (Walker). To measure host discrimination, choice experiments were conducted in which females of both species foraged and chose between healthy host larvae and hosts initially parasitized by either C. kariyai or M. pulchricornis. An olfactory test was also performed to examine the discrimination behavior of the two parasitoids. Our results showed that, in oviposition choice tests, both braconid female wasps were able to discriminate between unparasitized hosts and from four to seven day-old hosts previously attacked by conspecific and heterospecific wasps. On the other hand, superparasitism and multiparasitism occurred even in host larvae that were parasitized two days earlier. However, once the immature parasitoids hosts are at larval stage (1st and 2nd instar), super- and multiparasitism were avoided in the two-choice test, but the latter often occurred in the multiple-choice experiment. Host discrimination abilities may have been based on plant volatile signals incurred from damaged plants and internal mechanisms from four to seven post-parasitized hosts.  相似文献   

19.
Abstract. 1. The birch ( Betula )-feeding aphid, Monaphis antennata, is always found at low densities on individual hosts and has low local abundance, but another birch-feeding aphid, Euceraphis betulae , is often found at high densities on individual hosts and has high local abundance.
2. This work attempts to establish whether the interaction between M. antennata and its host or the behaviour of individuals limits its densities.
3. Both species were reared on saplings, and population sizes were monitored for 6 weeks. Two levels of host quality were used and feeding space was kept constant throughout the experiment. Adults were prevented from leaving the saplings by clipping their wings, and predators were excluded.
4. On plants of similar host quality, both species achieved similar population sizes.
5. It is concluded that resource availability or the interactions between individuals are unlikely to be important causes of rarity.  相似文献   

20.
Host use by herbivores is largely determined by host properties such as nutrient content and chemical defence against foragers. The impacts of these attributes on a herbivore may largely depend on its life cycle stage. Lichen species are known to differ in nutritional quality and level of chemical defence and, consequently, vary as fodder for herbivores. The aim of this study was to explore the impact of several lichen species and the presence of their secondary metabolites on their use as hosts by a specialist lichen-feeder, Cleorodes lichenaria. This study also addressed, for the first time, how a specialist lichen-feeder deals with different lichen secondary metabolites. In the beginning of their development, larvae grew better on Xanthoria parietina than on the other host lichens, whereas older larvae grew best on Ramalina fraxinea. Lichen secondary chemicals in R. fraxinea and Parmelia sulcata hindered larval growth in the beginning but after 75 days lichen secondary chemicals had no impact on the mass of larvae. Physodic acids in Hypogymnia physodes were lethal to larvae. In general, larvae metabolized 70–95% of ingested lichen secondary chemicals and the rest of these were excreted in frass. Lichen secondary metabolites in P. sulcata restrict and in H. physodes prevent their use as a host for C. lichenaria larvae. Our main finding, the ability of larvae to metabolize several lichen secondary metabolites, indicates digestive adaptation to these chemicals. No signs of sequestration of these chemicals were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号