首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A cladistic analysis of the lower Hymenoptera, including all the ‘symphytan’ families and the apocritan families Stephanidae, Megalyridae, Trigonalyidae, Ibaliidae, Vespidae and Gasteruptiidae, has been undertaken. A total of 98 characters were scored for 21 taxa. Twenty equally parsimonious minimum-length trees were obtained. The phylogenetic status of the Xyelidae is uncertain: they might be monophyletic. or the Xyelinae might be the sistergroup of the rest of the Hymenoptera. The non-xyelid Hymenoptera are probably monophyletic; the phylogeny Tenthredinoidea + (Megalodontoidea + (Cephidae + (Anaxyelidea + (Siricidae + (Xiphydriidae + (Orussidae + Apocrita)))))) is proposed for this clade. The Blasticotomidae are probably the sistergroup of all othe Tenthredinoidea, but tenthredinoid phylogeny is otherwise uncertain. Substantial homoplasy occurs within the ‘siricoid’ families, making the relative positions of the Anaxyelidae and Siricidae uncertain. The Stephanidae might be the sistergroup of the rest of the Apocrita; the phylogeny of the remaining apocritan taxa included is insufficiently elucidated. The phylogeny proposed here supports the hypothesis that the appearance of parasitism in the Hymenoptera took place in the common ancestor of Orussidae + Apocrita, the host of which was probably wood boring insect larvae. The exact larval mode of feeding of the ancestral hymenopteran cannot be determined due ot the diversity of lifestyles in the basal lineages of the order.  相似文献   

2.
The area around the antennal bases and on the lower face was studied in Hymenoptera, including representatives of all “symphytan” superfamilies and apocritan families pupating in wood. This was done in order to eludicate the possible function and phylogenetic significance of modifications in the area under study. Two different kinds of structure which might serve to accommodate the antennal bases during emergence from the site of pupation, were investigated. Subantennal grooves were observed in Siricidae, Xiphydriidae, Orussidae, Megalyridae, and some Aulacidae, and vestigial grooves are probably present in Stephanidae; possible incipient structures were observed in some Tenthredinoidea, Megalodontoidea and Cephoidea. Antennal scrobes were observed in Ibaliidae, Liopteridae, Ichneumonidae and Chalcidoidea; they might have taken over the function of the subantennal grooves in these taxa. The distribution of subantennal grooves within the Hymenoptera cannot be explained without some homoplasy.  相似文献   

3.
In a previous study of the phylogeny of basal Hymenoptera, Vilhelmsen (2001; Zool. J. Linn. Soc . 131 : 393–442) compiled an extensive morphological data matrix for a phylogenetic analysis of basal Hymenoptera, comprising 38 hymenopteran genera. In this study, his characters are revised. This results in a cladogram whose relationships largely agree with those proposed by Vilhelmsen, except that the relationships at the base of the Hymenoptera are unresolved. The revised data matrix is expanded by 17 sawfly and three apocritan taxa. Moreover, 112 new morphological characters from different parts of the larval and adult morphology are also added to the data matrix, including 82 from a recent study of the terminal abdominal segments of male Hymenoptera. The addition of the new characters leads to Xyelidae, again, being the sister-group of all other Hymenoptera. The relationships among the sawfly families as proposed by Vilhelmsen are confirmed, except that the relationships among Syntexis , Siricidae and Xiphydriidae + Vespina are unresolved and that the monophyly of Apocrita is not convincingly supported. A separate analysis is performed which includes all extant genera of Xyelidae. The internal phylogeny of Xyelidae is determined as (( Macroxyela Megaxyela ) Xyelecia ( Xyela Pleroneura )).  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 209–243.  相似文献   

4.
In this study, we sequenced one nuclear and three mitochondrial DNA loci to construct a robust estimate of phylogeny for all available species of Tetanocera. Character optimizations suggested that aquatic habitat was the ancestral condition for Tetanocera larvae, and that there were at least three parallel transitions to terrestrial habitat, with one reversal. Maximum likelihood analyses of character state transformations showed significant correlations between habitat transitions and changes in four larval morphological characteristics (cuticular pigmentation and three characters associated with the posterior spiracular disc). We provide evidence that phylogenetic niche conservatism has been responsible for the maintenance of aquatic-associated larval morphological character states, and that concerted convergence and/or gene linkage was responsible for parallel morphological changes that were derived in conjunction with habitat transitions. These habitat-morphology associations were consistent with the action of natural selection in facilitating the morphological changes that occurred during parallel aquatic to terrestrial habitat transitions in Tetanocera.  相似文献   

5.
The obligate mutualism between pollinating fig wasps in the family Agaonidae (Hymenoptera: Chalcidoidea) and Ficus species (Moraceae) is often regarded as an example of co-evolution but little is known about the history of the interaction, and understanding the origin of functionally dioecious fig pollination has been especially difficult. The phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus were inferred from mitochondrial cytochrome oxidase gene sequences (mtDNA) and morphology. Separate and combined analyses indicated that the pollinators of functionally dioecious figs are not monophyletic. However, pollinator relationships were generally congruent with host phylogeny and support a revised classification of Ficus. Ancestral changes in pollinator ovipositor length also correlated with changes in fig breeding systems. In particular, the relative elongation of the ovipositor was associated with the repeated loss of functionally dioecious pollination. The concerted evolution of interacting morphologies may bias estimates of phylogeny based on female head characters, but homoplasy is not so strong in other morphological traits. The lesser phylogenetic utility of morphology than of mtDNA is not due to rampant convergence in morphology but rather to the greater number of potentially informative characters in DNA sequence data; patterns of nucleotide substitution also limit the utility of mtDNA findings. Nonetheless, inferring the ancestral associations of fig pollinators from the best-supported phylogeny provided strong evidence of host conservatism in this highly specialized mutualism.  相似文献   

6.
Simultaneous analysis of morphological and molecular characters from the 16S rDNA, 28S rDNA and cytochrome oxidase 1 genes was employed to resolve phylogenetic relationships among the apocritan (Insecta: Hymenoptera: Apocrita) wasps. Parsimony analyses, employing a broad range of models, consistently recovered the Proctotrupomorpha as a natural group, the Megalyridae and Trigonalidae as sister groups, a clade comprising the Monomachidae, Diapriidae, and Maamingidae, the Vanhorniidae and Proctotrupidae as sister groups, the Procto-trupoidea as polyphyletic, and the Evaniomorpha as a grade (but including the Ichneumonoidea, Aculeata, and Stephanidae). The Proctotrupomorpha, containing virtually all of the wholly endoparasitic lineages, was consistently recovered as an apical clade, with the remaining groups forming a parapbyletic grade below them. Although the relative placement of the groups forming this basal grade varied among analyses, the most commonly recovered arrangement is consistent with the ancestral biology being ectoparasitism of coleopteran, wood-boring larvae. Furthermore, the recovery of the ectoparasitic-containing proctotrupomorphs (Chalcidoidea and, in some analyses, Ceraphronoidea) as apical lineages argues that these biologies are reversals.  相似文献   

7.

Background  

Social wasps in the subfamily Polistinae (Hymenoptera: Vespidae) have been important in studies of the evolution of sociality, kin selection, and within colony conflicts of interest. These studies have generally been conducted within species, because a resolved phylogeny among species is lacking. We used nuclear DNA microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters to generate a phylogeny for the Polistinae (Hymenoptera) using 69 species.  相似文献   

8.
Vilhelmsen L 《ZooKeys》2011,(130):343-361
The head capsule of a taxon sample of three outgroup and 86 ingroup taxa is examined for characters of possible phylogenetic significance within Hymenoptera. 21 morphological characters are illustrated and scored, and their character evolution explored by mapping them onto a phylogeny recently produced from a large morphological data set. Many of the characters are informative and display unambiguous changes. Most of the character support demonstrated is supportive at the superfamily or family level. In contrast, only few characters corroborate deeper nodes in the phylogeny of Hymenoptera.  相似文献   

9.
The structure of the ovipositor sheaths is examined in a number of parasitic wasps as well as a few non-parasitic taxa. Parasitic wasps in the families Aulacidae, Braconidae, Ichneumonidae, Megalyridae, and Stephanidae with a very elongate, external ovipositor have the lateral wall of the sheath finely transversely subdivided by narrow furrows. This makes the sheath highly flexible, allowing it to support the ovipositor proper during ovipositing. The taxa having such a flexible sheath all drill into wood to lay their eggs. Support at the tip of the ovipositor is crucial in the initial stages of oviposition. The flexible ovipositor sheath is possibly a very ancient trait, arising prior to the radiation of extant Apocrita. This is corroborated by their presence in fossil Hymenoptera from the Upper Jurassic. The occurrence of short and/or concealed ovipositors with rigid sheaths in many extant apocritan taxa must therefore be assumed to be the result of multiple reversals.  相似文献   

10.
Diversification in insects has often been linked to the evolution of angiosperms. The majority of studies reporting this link, however, have been done on herbivorous insects. It remains unclear if the diversification of angiosperms was also influential in the diversification of species-rich, carnivorous insect groups. Here we investigate the timing of the origin and diversification in the stinging wasps (Hymenoptera: Aculeata). We employ a Bayesian Markov chain Monte Carlo relaxed clock approach to estimate divergence times for 13 wasp families and eight superfamilies. Divergence times are calibrated with 12 fossils representing groups in various lineages. Our results indicate that many of the modern aculeate families originated during the Cretaceous and in concert with the diversification of angiosperms. This similarity between diversification ages in wasps and in angiosperms may be due to an increased habitat complexity and prey diversity that early angiosperm forests provided.  相似文献   

11.
Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae), and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera) based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase). The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes). Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of Apocrita is unlikely to be the major cause for the elevated substitution rates observed in hymenopteran mitochondrial genomes.  相似文献   

12.
Dipteran larval morphology exhibits overwhelming variety, affected by their diverse feeding habits and habitat use. In particular, larval mouthpart morphology is associated with feeding behavior, providing key taxonomic traits. Despite most larval Brachycera being carnivorous, a basal brachyceran family, Rhagionidae, contains bryophyte-feeding taxa with multiple feeding habits. To elucidate the life history, biology, and morphological evolution of the bryophyte-feeding rhagionids, the larval feeding behavior and morphology, and the adult oviposition behavior of four species belonging to three genera of Spaniinae (Spania Meigen, Litoleptis Chillcott and Ptiolina Zetterstedt) are described. Moreover, changes of the larval morphology associated with the evolution of bryophyte-feeding are traced by molecular phylogenetic analyses. Spania and Litoleptis (thallus-miners of thallose liverworts) share a toothed form of apical mandibular sclerite with an orifice on its dorsal surface, which contrasts to those of the other members of Rhagionidae possessing a blade-like mandibular hook with an adoral groove; whereas, Ptiolina (stem borer of mosses) exhibits a weak groove on the adoral surface of mandible and highly sclerotized maxilla with toothed projections. Based on the larval feeding behavior of the thallus-miners, it is inferred that the toothed mandibles with the dorsal orifice facilitate scraping plant tissue and then imbibing it with a great deal of the sap. A phylogeny indicated that the bryophyte-feeding genera formed a clade with Spaniopsis and was sister to Symphoromyia, which presumably are detritivores. This study indicates that the loss or reduction of adoral mandibular groove and mandibular brush is coincident with the evolution of bryophyte-feeding, and it is subsequently followed by the occurrence of dorsal mandibular orifice and the loss of creeping welts accompanying the evolution of thallus-mining.  相似文献   

13.
Anatomical studies and behavioural observations indicate that representatives of the Orussidae use vibrational sounding to detect suitable oviposition sites. During host location, vibrations generated by tapping the tips of the antennae against the wood are picked up by the fore legs through the basitarsal spurs, transmitted along the basitarsi to thin-walled areas on the tibiae and through haemolymph to the subgenual organs, where they are transduced into nerve impulses. The apical antennomeres are distinctly shaped and have the cuticle thickened distally. The fore basitarsi have weakly sclerotised basitarsal lines proximally and membranous basitarsal spurs distally. The external wall of the fore tibiae have thin-walled areas distally on their posterior parts. Internally, large subgenual organs are situated opposite the thin-walled areas and each organ consists of 300–400 scolopidial units suspended between a lateral cuticular spine, a ventral sheet and a median ridge. The ovipositor is several times the length of the body of the wasp. When at rest, it extends all the way into the prothorax, where it is coiled before extending posteriorly to lie between the third valvulae distally. The ovipositor lies in a membranous ovipositor sac attached posteriorly to the proximal parts of the ovipositor apparatus and the posterior margin of sternum 7. In the ovipositor apparatus, the anterior parts of the second valvifers are displaced and expanded anterodorsally, inverting the first valvifers and the base of the ovipositor. When in use, the ovipositor is extended and retracted by median apodemes situated on the anterior margins of abdominal sterna 3–7. Longitudinal muscles between the apodemes allow the latter to grip the ovipositor in troughs between them. The ovipositor extends from the abdomen at the tip of sternum 7, and an internal trough on sternum 7 serves to guide the ovipositor into the wood. Despite the alterations observed in the ovipositor apparatus in the Orussidae, the musculature is almost complete and the mode of operation presumably not much different from that of other representatives of the Hymenoptera. The different ways parasitic wasps with very long ovipositors handle and accommodate these and the implications for the evolutionary history of Hymenoptera are discussed. Accepted: 14 March 2001  相似文献   

14.
We inferred the incidence of nucleotide conversions in the COI and 16S rRNA mitochondrial genes of members of the Symphyta and basal Apocrita (Hymenoptera). Character-state reconstructions in both genes suggested that conversions between A and T (AT transversions) occurred much more frequently than any other type of change, although we cannot wholly discount an underlying transition bias. Parsimony analysis of COI nucleotide characters did not recover phylogeny; e.g., neither the Tenthredinoidea nor Apocrita were recovered as monophyletic. However, analysis of COI amino acid characters did recover these relationships, as well as others based on fossil and morphological evidence. Analysis of 16S rRNA characters also recovered these relationships providing conversions between A and T were down-weighted. Analysis of the combined data sets gave relatively strong support for various relationships, suggesting that both data sets supported similar topographies. These data sets, both separately and combined, suggested that the phytophagous Siricidae were more closely related to the predominantly parasitic Apocrita than were the ectoparasitic Orussoidea. This suggests that the wasp parasitic lifestyle did not have a single origin, unless the Siricidae have more recently reverted to phytophagy. Alternatively, parasitism evolved twice independently, once in the Orussoidea and again in the Apocrita. The latter scenario is supported by the observation that the evolution of parasitism was accompanied by a tendency for the larvae to develop inside plant tissues. Adaptations that accompanied the movement of wasps into a confined, wood-boring habitat may have preadapted them to becoming ectoparasitic. Received: 27 March 1996 / Accepted: 2 August 1996  相似文献   

15.
16.
ABSTRACT: BACKGROUND: The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. RESULTS: Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. DISCUSSION: Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment.  相似文献   

17.
We test hypotheses for the evolution of a life history trait among a group of parasitoid wasps (Hymenoptera: Ichneumonoidea), namely, the transition among koinobiont parasitoids (parasitoids whose hosts continue development after oviposition) between attacking exposed hosts and attacking hosts that are concealed within plant tissue. Using a range of phylogeny estimates based on 28S rDNA sequences, we use maximum parsimony (MP) and maximum likelihood (ML) methods to estimate the ancestral life history traits for the main clades in which both traits occur (using the programs MacClade and Discrete, respectively). We also assess the robustness of these estimates; for MP, we use step matrices in PAUP* to find the minimum weight necessary to reverse estimates or make them ambiguous, and for ML, we measure the differences in likelihood after fixing the ancestral nodes at the alternative states. We also measure the robustness of the MP ancestral state estimate against uncertainties in the phylogeny estimate, manipulating the most-parsimonious tree in MacClade to find the shortest suboptimal tree in which the ancestral state estimate is reversed or made ambiguous. Using these methods, we find strong evidence supporting two transitions among koinobiont Ichneumonoidea: (1) to attacking exposed hosts in a clade consisting of the Helconinae and related subfamilies, and (2) the reverse transition in a clade consisting of the Euphorinae and related subfamilies. In exploring different methods of analyzing variable-length DNA sequences, we found that direct optimization with POY gave some clearly erroneous results that had a profound effect on the overall phylogeny estimate. We also discuss relationships within the superfamily and expand the Mesostoinae to include all the gall-associated braconids that form the sister group of the Aphidiinae.  相似文献   

18.
Cooperative brood care is assumed to be the common driving factor leading to sociality. While this seems to be true for social Hymenoptera and many cooperatively breeding vertebrates, the importance of brood care for the evolution of eusociality in termites is unclear. A first step in elucidating this problem is an assessment of the ancestral condition in termites. We investigated this by determining the overall level of brood care behaviour across four termite species that cover the phylogenetic diversity of the lower termites. Brood care was low in the three species (all from different families) that had an ancestral wood-dwelling lifestyle of living in a single piece of wood that serves as food and shelter. In the fourth species, a lower termite that evolved outside foraging, brood care was more common. Together with data for higher termites, this suggests that brood care in termites only becomes important when switching from a wood-dwelling to a foraging lifestyle. These results imply that early social evolution in termites was driven by benefits of increased defence, while eusociality in Hymenoptera and cooperative breeding in birds and mammals are primarily based on brood care.  相似文献   

19.
The ability to consume wood as food (xylotrophy) is unusual among animals. In terrestrial environments, termites and other xylotrophic insects are the principle wood consumers while in marine environments wood-boring bivalves fulfill this role. However, the evolutionary origin of wood feeding in bivalves has remained largely unexplored. Here we provide data indicating that xylotrophy has arisen just once in Bivalvia in a single wood-feeding bivalve lineage that subsequently diversified into distinct shallow- and deep-water branches, both of which have been broadly successful in colonizing the world’s oceans. These data also suggest that the appearance of this remarkable life habit was approximately coincident with the acquisition of bacterial endosymbionts. Here we generate a robust phylogeny for xylotrophic bivalves and related species based on sequences of small and large subunit nuclear rRNA genes. We then trace the distribution among the modern taxa of morphological characters and character states associated with xylotrophy and xylotrepesis (wood-boring) and use a parsimony-based method to infer their ancestral states. Based on these ancestral state reconstructions we propose a set of plausible hypotheses describing the evolution of symbiotic xylotrophy in Bivalvia. Within this context, we reinterpret one of the most remarkable progressions in bivalve evolution, the transformation of the “typical” myoid body plan to create a unique lineage of worm-like, tube-forming, wood-feeding clams. The well-supported phylogeny presented here is inconsistent with most taxonomic treatments for xylotrophic bivalves, indicating that the bivalve family Pholadidae and the subfamilies Teredininae and Bankiinae of the family Teredinidae are non-monophyletic, and that the principle traits used for their taxonomic diagnosis are phylogenetically misleading.  相似文献   

20.
A portion of mitochondrially encoded 12S and 16S ribosomal RNA genes were sequenced from 13 currently recognized species of the midwater deep-sea fish genusCyclothone (Stomiiformes: Gonostomatidae) and three gonostomatid outgroup taxa. Phylogenetic analyses using maximum parsimony and maximum likelihood methods were performed on unambiguously aligned, combined sequences (803 bp) of the two genes. The resultant tree topologies from the two methods were congruent, being robust and supported by various tree statistics, enabling the evolutionary history ofCyclothone to be described in detail. The molecular phylogeny demonstrated striking inconsistencies with previously proposed “natural groups”, although the latter could be confidently refuted by the molecular data. The most significant characteristic of the evolutionary history ofCyclothone was the independent acquisition of an apomorphic depth habitat from the relatively ancestral, lower mesopelagic habitat, by each of three major distinct lineages that had diverged earlier in their evolution. Moreover, such macroevolutionary habitat shifts had been necessarily accompanied by morphological and ecological novelties, presumably originating from paedomorphosis. Repeated evolution of such changes strongly suggests ontogenetic plasticity inCyclothone which could enable these fishes to acquire larval-like, simple organization of body structure. Such a body plan could help them subsist in food-poor surroundings and regulate reproductive variables that take advantage of increasing larval survival toward shallower depths. Recent speciation events, on the contrary, have produced contemporary sister species of allopatric (or microallopatric) distributions, but few morphological and ecological differences. Even if remarkable miniaturization has occurred, such as in the Mediterranean endemicC. pygmaea, it had to have been a simple truncation of ancestral species' ontogeny without attendance of any discernible paedomorphic features. On the basis of the fossil record, geological history of the Mediterranean region, and ectotherm molecular divergence rate, it was estimated thatCyclothone radiation had already started in the early-middle Miocene (17–20 million years ago).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号