首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was investigated whether rat hepatocytes maintain their plasma membrane specialization (sinusoidal, lateral and bile canalicular sites) and their intracellular polarity (peribiliary region, rich in lysosomes and poor in mitochondria) after isolation. The morphology of the hepatocytes and the cytochemical localization of marker enzymes for the bile canalicular membrane (alkaline phosphatase, adenosine triphosphatase and 5' nucleotidase), for the lysosomes (acid phosphatase) and for the mitochondria (beta-hydroxybutyrate dehydrogenase and succinate dehydrogenase) were studied in situ and directly after isolation using both light and electron microscopy. The morphology of the cells and the cytochemical activity of acid phosphatase, succinate dehydrogenase and beta-hydroxybutyrate dehydrogenase showed that in isolated cells, as in situ, the lysosomes were concentrated in bands, devoid of mitochondria. Unlike in situ the reaction product of alkaline phosphatase, adenosine triphosphatase and 5'nucleotidase was evenly distributed along the entire plasma membrane of the isolated cells. Morphologically, no tight or gap junctions or desmosomes could be detected in the isolated cells, while the plasma membrane appeared to be homogeneously covered with uniform microvilli. In conclusion it can be stated that during isolation the hepatocytes loose their distinct plasma membrane specialization, but maintain their peribiliary region rich in lysosomes and poor in mitochondria.  相似文献   

2.
Several enzymes associated with the hepatocyte cell surface, alkaline phosphatase (AP), 5'-nucleotidase (5'N), Mg++- and total Na+K+Mg++-ATpase, were assayed and localized cytochemically in order to gain insight into alterations of the plasma membrane components during reassociation of hepatocytes in primary monolayer culture. During a period of 4 days the activities of 5'nucleotidase and alkaline phosphatase increased spontaneously up to three- and four-fold, respectively. Dexamethasone reinforce the rise of alkaline phosphatase activity but retarded the increase of that of 5'nucleotidase. However, after the third day the level of 5'nucleotidase activity converged with the untreated controls. The activities of Mg++- and Na+K+Mg++-ATPase, which closely paralleled each other, remained essentially unchanged throughout cultivation and were not affected by dexamethasone. Cytochemical demonstration of alkaline phosphatase, 5'nucleotidase and Mg++-ATPase, using the lead salt method, revealed the potential presence of reaction product on the whole cell surface. However, the cells did not react uniformly, particularly on bile canalicular membranes. This heterogeneity seems to be due to different stages of canalicular development and to different functional states of the cultured hepatocytes.  相似文献   

3.
The redistribution and fate of colchicine-induced alkaline phosphatase (ALPase) in rat hepatocytes were investigated by electron microscopic enzyme cytochemistry and biochemistry. ALPase activity markedly increased in rat hepatocytes after colchicine treatment (2.0 mg/kg body weight, intraperitoneal injection). At 20–24 h after colchicine treatment, the liver showed the highest activity of ALPase. Thereafter, ALPase activity decreased and returned to normal levels at 48 h. In normal hepatocytes from control rats, ALPase activity was seen only on the bile canalicular membrane. However, at 20–24 h after colchicine treatment, colchicine-induced ALPase was redistributed in the sinusoidal and lateral (basolateral) membranes as well as in the bile canalicular membrane. At 30–36 h after colchicine treatment, ALPase activity on the basolateral membrane gradually decreased. In contrast, ALPase in the bile canalicular membrane increased along with the enlargement of bile canaliculi, suggesting that ALPase in the basolateral membrane had been transported to the bile canalicular membrane. Furthermore, ALPase-positive vesicles, cisternae and autophagosome-like structures were frequently seen in the cytoplasm. ALPase was also positive in some lysosomal membranes. ALPase in hepatocytes at 48 h after colchicine treatment returned to almost the same location as in control hepatocytes. Altogether, it is suggested that excessively induced ALPase is at least partially retrieved by invagination of the bile canalicular membrane and then transported to lysosomes for degradation. In addition, this study indicates that excess plasma membrane might be a possible origin of autophagosomal membrane.  相似文献   

4.
We have determined alkaline phosphatase activity in total liver plasma membrane fractions from rats subjected to a partial hepatectomy and sham operated with or without manipulation of the liver. In all these cases, an increase of the enzyme activity was observed. Kinetic studies of alkaline phosphatase activity performed on plasma membrane fractions from rats subjected to a partial hepatectomy suggest that alkaline phosphatase increase is produced by de novo biosynthesis of enzyme molecules. Determination of alkaline phosphatase activity in purified plasma membrane subfractions corresponding to each of the three functional regions of the hepatocyte surface (blood sinusoidal, lateral and bile canalicular), indicates that the increase of the enzyme activity observed after partial hepatectomy is selectively induced in the bile canalicular domain of the hepatocyte plasma membrane.  相似文献   

5.
In rats changes in plasma membrane enzyme activities due to Gal-N intoxication were studied by enzymehistochemical methods. The bile canalicular 5'-nucleotidase and nucleoside polyphosphatase activities decreased; the sinusoidal 5'-nucleotidase remained unchanged. The bile canalicular leucyl-beta-naphthyl-amidase showed an increase in activity; the alkaline phosphatase activity remained unchanged. In contrast to the spotty necrosis, changes in plasma membrane enzyme activities were seen in all liver cells, suggesting that changes of these activities, occurring after Gal-N treatment, do not correlate with cell death. The conclusion was drawn that the deviations of the enzyme activities might be due to changes in the lipid environment of the enzyme proteins in the membrane. With the exception of alkaline phosphatase, partial hepatectomy caused the same changes in enzyme activities as did Gal-N intoxication. Nevertheless Gal-N administration to partial hepatectomized rats did not lead to hepatic necrosis. Galactose given simultaneously or within two hours after Gal-N prevented both changes in plasma membrane enzyme activities and hepatocellular damage. This suggests an important role of galactolipids and galactoproteins in the plasma membrane alterations.  相似文献   

6.
Summary Extrahepatic obstructive cholestasis has been demonstrated to induce a redistribution of domain specific membrane proteins in rat hepatocytes reflecting loss or even reversal of cell polarity. In order to further characterize the redistribution of canalicular antigens, we used the Lowicryl K4M immunogold technique for examination of the effects of bile duct ligation (50 h) on the distribution of antigen in rat hepatocytes at the ultrastructural level and quantitated immuno-gold density in the three domains of the plasma membrane. In normal hepatocytes, antigen was localized almost exclusively in the canalicular domain while the sinusoidal and lateral membranes showed only weak immunoreactivity. Other localizations included organelles compatible with known pathways of biosynthesis and degradation. Bile duct ligation markedly reduced immunolabel in the canalicular and increased it slightly in the sinusoidal domain. The number and staining intensity of immunoreactive sub-canalicular lysosomes and vesicles probably representing endosomes was augmented. Number of immunogold particles per m of plasma membrane were 7.86 vs 2.46 (P<0.005) in the canalicular, 1.16 vs 1.38 (n.s.) in the sinusoidal, and 1.23 vs 1.08 (n.s.) in the lateral domain resulting in a canalicular decrease by 68.7% and a sinusoidal increase of 19.0%. Overall decrease in total plasma membranes was by 29.7% (P<0.05). Thus, our data show that the sinusoidal and lateral domains behave differently. Furthermore, quantitative immunocytochemistry demonstrates a decrease in the canalicular antigen density and suggests a sinusoidal increase. The present data agree with the concept that bile duct ligation results in a loss or even reversal of cell polarity in hepatocytes.This study was supported by the Swiss National Science Foundation grants 3.846.0.87 (to L.L.) and 3.992.0.87 (to P.J.M.)  相似文献   

7.
A rat liver plasma membrane preparation was isolated and characterized both biochemically and morphologically. The isolation procedure was rapid, simple and effective in producing a membrane fraction with the following biochemical characteristics: approximately 40-fold enrichment in three plasma membrane markers, 5'-nucleotidase, alkaline phosphodiesterase I (both putative bile canalicular membrane enzymes), and the asialo-glycoprotein (ASGP) receptor (a membrane glycoprotein present along the sinusoidal front of hepatocytes); a yield of each of these plasma membrane markers that averaged approximately 16%; and minimal contamination by lysosomes, nuclei, and mitochondria, but persistent contamination by elements of the endoplasmic reticulum. Morphological analysis of the preparation revealed that all three major domains of the hepatocyte plasma membrane (sinusoidal, lateral, and bile canalicular) were present in substantial amounts. The identification of sinusoidal membrane was further confirmed when ASGP binding sites were localized predominantly to this membrane in the isolated PM using electron microscope autoradiography. By morphometry, the sinusoidal front membrane accounted for 47% of the total membrane in the preparation, whereas the lateral surface and bile canalicular membrane accounted for 6.8% and 23% respectively. This is the first report of such a large fraction of sinusoidal membrane in a liver plasma membrane preparation.  相似文献   

8.
The formation of hepatic bile requires that water be transported across liver epithelia. Rat hepatocytes express three aquaporins (AQPs): AQP8, AQP9, and AQP0. Recognizing that cholesterol and sphingolipids are thought to promote the assembly of proteins into specialized membrane microdomains, we hypothesized that canalicular bile secretion involves the trafficking of vesicles to and from localized lipid-enriched microdomains in the canalicular plasma membrane. Hepatocyte plasma membranes were sonicated in Triton and centrifuged overnight on a sucrose gradient to yield a Triton-soluble pellet and a Triton-insoluble, sphingolipid-enriched microdomain fraction at the 5%/30% sucrose interface. The detergent-insoluble portion of the hepatocyte plasma membrane was enriched in alkaline phosphatase (a microdomain-positive marker) and devoid of amino-peptidase N (a microdomain-negative marker), enriched in caveolin, both AQP8 and AQP9, but negative for clathrin. The microdomain fractions contained chloride-bicarbonate anion exchanger isoform 2 and multidrug resistance-associated protein 2. Exposure of isolated hepatocytes to glucagon increased the expression of AQP8 but not AQP9 in the microdomain fractions. Sphingolipid analysis of the insoluble fraction showed the predominant species to be sphingomyelin. These data support the presence of sphingolipid-enriched microdomains of the hepatocyte membrane that represent potential localized target areas for the clustering of AQPs and functionally related proteins involved in canalicular bile secretion.  相似文献   

9.
Extrahepatic obstructive cholestasis has been demonstrated to induce a redistribution of domain specific membrane proteins in rat hepatocytes reflecting loss or even reversal of cell polarity. In order to further characterize the redistribution of canalicular antigens, we used the Lowicryl K4M immunogold technique for examination of the effects of bile duct ligation (50 h) on the distribution of antigen in rat hepatocytes at the ultrastructural level and quantitated immuno-gold density in the three domains of the plasma membrane. In normal hepatocytes, antigen was localized almost exclusively in the canalicular domain while the sinusoidal and lateral membranes showed only weak immunoreactivity. Other localizations included organelles compatible with known pathways of biosynthesis and degradation. Bile duct ligation markedly reduced immunolabel in the canalicular and increased it slightly in the sinusoidal domain. The number and staining intensity of immunoreactive subcanalicular lysosomes and vesicles probably representing endosomes was augmented. Number of immunogold particles per micron of plasma membrane were 7.86 vs 2.46 (P less than 0.005) in the canalicular, 1.16 vs 1.38 (n.s.) in the sinusoidal, and 1.23 vs 1.08 (n.s.) in the lateral domain resulting in a canalicular decrease by 68.7% and a sinusoidal increase of 19.0%. Overall decrease in total plasma membranes was by 29.7% (P less than 0.05). Thus, our data show that the sinusoidal and lateral domains behave differently. Furthermore, quantitative immunocytochemistry demonstrates a decrease in the canalicular antigen density and suggests a sinusoidal increase. The present data agree with the concept that bile duct ligation results in a loss or even reversal of cell polarity in hepatocytes.  相似文献   

10.
Summary Electron-cytochemical localization of alkaline phosphatase activity was performed on G cells of Necturus maculosus antral mucosa. Alkaline phosphatase activity was localized to the nuclear membrane, the Golgi/endoplasmic reticulum, and the limiting membranes of G cell peptide-secretion vesicles. There was no specific localization of alkaline phosphatase activity to the plasma membrane. Treatment of the tissues with levamisole (an alkaline phosphatase inhibitor) did not markedly reduce the specific alkaline phosphatase activity. Specific lead deposition was reduced by removal of the substrate from the reaction mixture. The results from this study on N. maculosus G cells demonstrate that alkaline phosphatase activity can be found in a non-mammalian gastric endocrine cell and that specific activity was localized primarily to those intracellular structures involved with protein biosynthesis.  相似文献   

11.
1. Liver plasma membranes originating from the sinusoidal, lateral and canalicular surface domains of hepatocytes were covalently labelled with sulpho-N-hydroxysuccinamide-biotin. After solubilization in Triton X-114, treatment with a phosphatidylinositol-specific phospholipase C (PI-PLC), two-phase partitioning and 125I-streptavidin labelling of the proteins resolved by PAGE, six major polypeptides (molecular masses 110, 85, 70, 55, 38 and 35 kDa) were shown to be anchored in bile canalicular membrane vesicles by a glycosyl-phosphatidylinositol (G-PI) 'tail'. 2. Permeabilized 'early' and 'late' endocytic vesicles isolated from liver were also examined. Two polypeptides (110 and 35 kDa) were shown to be anchored by a G-PI tail in 'late' endocytic vesicles. 3. Analysis of marker enzymes in bile-canalicular vesicles treated with PI-PLC showed that 5'-nucleotidase and alkaline phosphatase, but not leucine aminopeptidase and ecto-Ca2(+)-ATPase activities were released from the membrane. A low release and recovery of alkaline phosphodiesterase activity was noted. The cleavage from the membrane of 5'-nucleotidase as a 70 kDa polypeptide was confirmed by Western blotting using an antibody to this enzyme. 4. Antibodies raised to proteins released from bile-canalicular vesicles by PI-PLC treatment, and purified by partitioning in aqueous and Triton X-114 phases, localized to the bile canaliculi in thin liver sections. Antibodies to proteins not hydrolysed by this treatment stained by immunofluorescence the sinusoidal and canalicular surface regions of hepatocytes. 5. Antibodies generated to proteins cleaved by PI-PLC treatment of canalicular vesicles were shown to identify, by Western blotting, a major 110 kDa polypeptide in these vesicles. Two polypeptides (55 and 38 kDa) were detected in MDCK and HepG-2 cultured cells. 6. Since two of the six G-PI-anchored proteins targeted to the bile-canalicular plasma membrane were also detected in 'late' endocytic vesicles, the results suggest that a junction where exocytic and endocytic traffic routes meet occurs in a 'late' endocytic compartment.  相似文献   

12.
Canalicular plasma membranes were isolated from rat liver homogenates using nitrogen cavitation and calcium precipitation methods. Compared with homogenates, the membranes were enriched 55- to 56-fold in gamma-glutamyltransferase, aminopeptidase M, and alkaline phosphatase activities and showed very low enrichment in markers of other membranes. By electron microscopy, the membrane preparation contained neither junctional complexes nor contaminating organelles and consisted exclusively of vesicles. The presence of vesicles was also evident from the osmotic sensitivity of D-[6-3H]glucose uptake into the membrane preparation. Antisera obtained from rabbits immunized with highly purified rat kidney gamma-glutamyltransferase inhibited the transferase activity of intact or Triton X-100-solubilized membranes by 45-55%. Treatment of vesicles with anti-gamma-glutamyltransferase antisera and anti-rabbit IgG antisera increased the apparent density of the membranes during sucrose density gradient centrifugation. gamma-Glutamyltransferase and aminopeptidase M activities were selectively removed from the vesicles by limited proteolysis with papain without changing the intravesicular space or alkaline phosphatase activity of the membranes. Specific binding of anti-gamma-glutamyltransferase antibody to the outer surface of isolated hepatocytes was observed as measured by the antisera and 125I-labeled protein A; binding followed saturation kinetics with respect to antibody concentration. These data indicate that the isolated canalicular membrane vesicles are exclusively oriented right-side-out and that gamma-glutamyltransferase and aminopeptidase M are located on the luminal side of rat liver canalicular plasma membranes.  相似文献   

13.
Controversy has recently developed over the surface distribution of Na+,K+-ATPase in hepatic parenchymal cells. We have reexamined this issue using several independent techniques. A monoclonal antibody specific for the endodomain of alpha-subunit was used to examine Na+,K+-ATPase distribution at the light and electron microscope levels. When cryostat sections of rat liver were incubated with the monoclonal antibody, followed by either rhodamine or horseradish peroxidase-conjugated goat anti-mouse secondary, fluorescent staining or horseradish peroxidase reaction product was observed at the basolateral surfaces of hepatocytes from the space of Disse to the tight junctions bordering bile canaliculi. No labeling of the canalicular plasma membrane was detected. In contrast, when hepatocytes were dissociated by collagenase digestion, Na+,K+-ATPase alpha-subunit was localized to the entire plasma membrane. Na+,K+-ATPase was quantitated in isolated rat liver plasma membrane fractions by Western blots using a polyclonal antibody against Na+,K+-ATPase alpha-subunit. Plasma membranes from the basolateral domain of hepatocytes possessed essentially all of the cell's estimated Na+,K+-ATPase catalytic activity and contained a 96-kD alpha-subunit band. Canalicular plasma membrane fractions, defined by their enrichment in alkaline phosphatase, 5' nucleotidase, gamma-glutamyl transferase, and leucine aminopeptidase had no detectable Na+,K+-ATPase activity and no alpha-subunit band could be detected in Western blots of these fractions. We conclude that Na+,K+-ATPase is limited to the sinusoidal and lateral domains of hepatocyte plasma membrane in intact liver. This basolateral distribution is consistent with its topology in other ion-transporting epithelia.  相似文献   

14.
The ultrastructural cytochemical localization of a potassium-dependent oubain-sensitive nitrophenyl phosphatase (transport ATPase) activity in human blood platelets is described. This potassium-dependent nitrophenyl phosphatase activity was not affected by 5 mM levamisole, indicating that the reaction product identified was not due to nonspecific alkaline phosphatase activity. The K+-dependent nitrophenyl phosphatase was strictly localized to the platelet plasma membrane, while the open canalicular system and dense tubular system were devoid of reaction product. In contrast, (Ca2+,Mg2+)-activated ATPase activity was predominantly localized in the open canalicular system and dense tubular system with very little cytochemical activity expressed at the plasma membrane. These data demonstrate a relative segregation of these enzymes into unique membrane compartments of the human platelet. Such data may be useful with regard to identification of purified membrane fractions from platelets and may be significant with regard to the understanding of the function(s) of the different membrane compartments of the human platelet.  相似文献   

15.
In search of factors that regulate the phenotype of the peroxisomal compartment in wild-type liver parenchymal cells, we compared hepatocyte polarity to peroxisome differentiation, using adult liver as the standard. Differentiation parameters were evaluated in a three-dimensional culture model (spheroid), in 'sandwich' and monolayer primary hepatocyte cultures, and in 15.5 and 18.5-day-old foetal rat liver.Peroxisomes, studied by immunohistochemistry, enzyme histochemistry, and catalase specific activity, were better differentiated depending on foetal age (day 18.5 > day 15.5) and culture type (spheroid > sandwich > monolayer). The hepatocyte polarity markers ATP-, ADP-, and AMP-hydrolysing activities were, in all models, mislocalized at the lateral plasma membrane, whereas in contrast the multidrug resistance-associated protein 2 (mrp2) antigen was always correctly immunolocalized at the apical membrane domain. In cultures, the correct secretion of fluorescein (mrp2-mediated) into bile canaliculi was observed. Bile canaliculi (branching, ultrastructure and immunolocalization of the tight-junction associated protein ZO-1), were better differentiated in 18.5 than in 15.5-day-old foetal liver and in spheroid > sandwich > monolayer cultures.Our results show a parallelism between changes of the peroxisomal compartment and bile canalicular structure together with mrp2-mediated secretory function. Distinct polarization characteristics do not necessarily change simultaneously, suggesting different regulatory mechanisms.  相似文献   

16.
Summary Isolated rat hepatocytes maintained in primary culture on gas permeable membrane for 20 h form monolayers and establish at their cell borders a network of canaliculi (approximate diameter 3.5 μm). In the presence of the known choleretic bile acid dehydrocholate, dilation of canaliculi occurs. When nonfluorescent carboxyfluorescein diacetate ester is added to the culture medium, fluorescent carboxyfluorescein appears in the intracanalicular space. In the dilated state, fluid containing the fluorescent compound could be collected from the canaliculi by puncture with a micropipette. The intracanalicular space shows a negative electrical potential difference of 31 mV in reference to the bath solution and is 13.5 mV more positive with reference to recordings from the cytosol of cultured rat hepatocytes. Cultured rat hepatocytes grown on gas permeable membrane are energetically stable over 3 d. On Day 4, ATP levels increase markedly, whereas Na+−K+-ATPase activity declines. Ionic composition of hepatocytes, as measured by electronprobe element analysis on cryosection samples, does not change markedly during monolayer formation. With formation of bile canaliculi, the activity of alkaline phosphatase rapidly increases within 24 h and is stable for the next 3 d. Within that time the activity of γ-glutamyltranspeptidase, however, increases steadily, reaching a 1.6-fold higher activity than freshly isolated hepatocytes. Bile acids appear in the culture supernatant after 1 d. When unconjugated [14C]cholic acid is added to the cultures the supernatant contains also [14C]tauro- and [14C]glycocholic acid, indicating the preservation of conjugation capacity in these cultures. Total bile acid concentrations in the supernatant increase from 5 to 26 μM on Day 4. The cultures do not secrete α-fetoprotein. Monolayer cultures of hepatocytes in the presence of choleretic bile acids seem to be a suitable model system to collect and to analyze the composition of primary bile. In conjunction with the electrical parameters, it is possible to describe directly properties of bile secretion at the canalicular pole of the intact hepatocyte. This work was supported by the Deutsche Forschungsgemeinschaft, grant no. PE 250/5-1.  相似文献   

17.
Alkaline phosphatase and 5'-nucleotidase activities were analysed cytophotometrically in cryostat sections of female rat liver after partial hepatectomy. Alkaline phosphatase activity increased rapidly after operation up to a maximum seven-fold rise at 24 h in comparison with sham operated or control rats. There was no indication of preferential localization of alkaline phosphatase activity in either periportal or pericentral areas at any time point in control rats, sham operated rats or hepatectomized rats. Microscopical observation revealed that (a) all alkaline phosphatase activity was present at the bile canalicular surface of hepatocytes and (b) hepatocytes in mitosis did not show any increase in activity. These findings indicate that the high alkaline phosphatase activity after partial hepatectomy is not involved primarily in proliferation processes because cell division mainly takes place periportally. It may be needed for enhanced bile secretion by conversion of intracellular phosphorylcholine into choline which can be transported into the bile. The intracellular phosphorylcholine level is high after operation due to changes in phospholipid metabolism. 5'-Nucleotidase appeared to be three times higher pericentrally than periportally under normal conditions. Partial hepatectomy caused a 40 per cent decrease in activity in pericentral areas and only a small decrease periportally. It has been suggested that 5'-nucleotidase plays a role in breakdown of messenger RNA and its activity in control liver could be considerably lower periportally because plasma protein synthesis mainly takes place in this area.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Summary In rats changes in plasma membrane enzyme activities due to Gal-N intoxication were studied by enzymehistochemical methods. The bile canalicular 5-nucleotidase and nucleoside polyphosphatase activities decreased; the sinusoidal 5-nucleotidase remained unchanged. The bile canalicular leucyl--naphthyl-amindase showed an increase in activity; the alkaline phosphatase activity remained unchanged. In contrast to the spotty necrosis, changes in plasma membrane enzyme activities were seen in all liver cells, suggesting that changes of these activities, occurring after Gal-N treatment, do not correlate with cell death. The conclusion was drawn that the deviations of the enzyme activities might be due to changes in the lipid environment of the enzyme proteins in the membrane.With the exception of alkaline phosphatase, partial hepatectomy caused the same changes in enzyme activities as did Gal-N intoxication. Nevertheless Gal-N administration to partial hepatectomized rats did not lead to hepatic necrosis. Galactose given simultaneously or within two hours after Gal-N prevented both changes in plasma membrane enzyme activities and hepatocellular damage. This suggests an important role of galactolipids and galactoproteins in the plasma membrane alterations.Dedicated to Prof. Dr. E. Havinga on the occasion of his 70th birthday  相似文献   

19.
We have localized and identified five rat hepatocyte plasma membrane proteins using hybridoma technology in combination with morphological and biochemical methods. Three different membrane preparations were used as immunogens: isolated hepatocytes, a preparation of plasma membrane sheets that contained all three recognizable surface domains of the intact hepatocyte (sinusoidal, lateral, and bile canalicular), and a glycoprotein subfraction of that plasma membrane preparation. We selected monoclonal IgGs that were hepatocyte specific and localized them using both immunofluorescence on 0.5-micron sections of frozen liver and immunoperoxidase at the ultrastructural level. One antigen (HA 4) was localized predominantly to the bile canalicular surface, whereas three (CE 9, HA 21, and HA 116) were localized predominantly to the lateral and sinusoidal surfaces. One antigen (HA 16) was present in all three domains. Only one antigen (HA 116) could be detected in intracellular structures both in the periphery of the cell and in the Golgi region. The antigens were all integral membrane proteins as judged by their stability to alkaline extraction and solubility in detergents. The apparent molecular weights of the antigens were established by immunoprecipitation and/or immunoblotting. In a related study (Bartles, J.R., L.T. Braiterman, and A.L. Hubbard, 1985, J. Cell. Biol., 100:1126-1138), we present biochemical confirmation of the domain-specific localizations for two of the antigens, HA 4 and CE 9, and demonstrate their suitability as endogenous domain markers for monitoring the separation of bile canalicular and sinusoidal lateral membrane on sucrose density gradients.  相似文献   

20.
Aquaporin-8 (AQP8) water channels, which are expressed in rat hepatocyte bile canalicular membranes, are involved in water transport during bile formation. Nevertheless, there is no conclusive evidence that AQP8 mediates water secretion into the bile canaliculus. In this study, we directly evaluated whether AQP8 gene silencing by RNA interference inhibits canalicular water secretion in the human hepatocyte-derived cell line, HepG2. By RT-PCR and immunoblotting we found that HepG2 cells express AQP8 and by confocal immunofluorescence microscopy that it is localized intracellularly and on the canalicular membrane, as described in rat hepatocytes. We also verified the expression of AQP8 in normal human liver. Forty-eight hours after transfection of HepG2 cells with RNA duplexes targeting two different regions of human AQP8 molecule, the levels of AQP8 protein specifically decreased by 60-70%. We found that AQP8 knockdown cells showed a significant decline in the canalicular volume of approximately 70% (P < 0.01), suggesting an impairment in the basal (nonstimulated) canalicular water movement. We also found that the decreased AQP8 expression inhibited the canalicular water transport in response either to an inward osmotic gradient (-65%, P < 0.05) or to the bile secretory agonist dibutyryl cAMP (-80%, P < 0.05). Our data suggest that AQP8 plays a major role in water transport across canalicular membrane of HepG2 cells and support the notion that defective expression of AQP8 causes bile secretory dysfunction in human hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号