首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Alcoholic liver disease (ALD) develops as a consequence of priming and sensitizing mechanisms rendered by cross-interactions of primary mechanistic factors and secondary risk factors. Chronic alcohol abuse and its progression to ALD are associated with abnormal metabolism and low tissue or plasma levels, or both, of many micronutrients. Glutathione depletion is considered the most important sensitizing mechanism. In the present study efficacy of lecithin with vitamin-B complex to treat ethanol induced oxidative stress was compared with the effect of lecithin alone, tocopheryl acetate (vitamin E), as well as capacity of hepatic regeneration during abstention. Ethanol (1.6g / kg body weight/ day for 4 weeks) affects body weight in 16-18 week old male albino rats of Wistar strain weighing 200-220 g. Thiobarbituric acid reactive substance level, nitrite content, protein carbonyl group level, redox ratio (oxidized to reduced glutathione ratio), superoxide dismutase activity, and glutathione s-transferase activity significantly increased on ethanol exposure. Whereas reduced glutathione content, and activities of catalase, glutathione reductase and glutathione peroxidase significantly reduced due to ethanol exposure. These changes were reversed by different treatment. The results suggest that tocopheryl acetate (vitamin E) could partially reverse these changes and act as a potential therapeutic agent. However, lecithin with vitamin-B complex treatment is a promising therapeutic approach. Furthermore, preventive measures were more effective than curative treatment. Prevention of oxidative and nitrosative stress along with correction of nutritional deficiency is one of the proposed mechanisms for the therapeutic approach.  相似文献   

2.
In blood circulation, low density lipoproteins (LDL) can undergo modification, such as oxidation, and become key factors in the development of atherosclerosis. Although the liver is the major organ involved in the elimination of oxidized LDL (oxLDL), the identity of the receptor(s) involved remains to be defined. Our work aims to clarify the role of the scavenger receptor class B type I (SR-BI) in the hepatic metabolism of mildly and standardly oxLDL as well as the relative contribution of parenchymal (hepatocytes) and nonparenchymal liver cells with a special emphasis on CE-selective uptake. The association of native LDL and mildly or standardly oxLDL labeled either in proteins or in cholesteryl esters (CE) was measured on primary cultures of mouse hepatocytes from normal and SR-BI knock-out (KO) mice. These in vitro assays demonstrated that hepatocytes are able to mediate CE-selective uptake from both LDL and oxLDL and that SR-BI KO hepatocytes have a 60% reduced ability to selectively take CE from LDL but not towards mildly or standardly oxLDL. When lipoproteins were injected in the mouse inferior vena cava, parenchymal and nonparenchymal liver cells accumulated more CE than proteins from native, mildly and standardly oxLDL, indicating that selective uptake of CE from these lipoproteins occurs in vivo in these two cell types. The parenchymal cells contribute near 90% of the LDL-CE selective uptake and SR-BI for 60% of this pathway. Nonparenchymal cells capture mainly standardly oxLDL while parenchymal and nonparenchymal cells equally take up mildly oxLDL. An 82% reduction of standardly oxLDL-CE selective uptake by the nonparenchymal cells of SR-BI KO mice allowed emphasizing the contribution of SR-BI in hepatic metabolism of standardly oxLDL. However, SR-BI is not responsible for mildly oxLDL metabolism. Thus, SR-BI is involved in LDL- and standardly oxLDL-CE selective uptake in parenchymal and nonparenchymal cells, respectively.  相似文献   

3.
DNA synthesis of adult rat parenchymal hepatocytes alone in primary culture can be stimulated only by the addition of humoral growth factors to the culture medium. However, when parenchymal hepatocytes were cocultured with nonparenchymal liver cells from adult rats, their DNA synthesis was markedly stimulated in the absence of added growth factors or calf serum. DNA synthesis of parenchymal hepatocytes was not stimulated by conditioned medium from nonparenchymal liver cells and was greatest when the parenchymal cells were plated on 24-h cultures of nonparenchymal liver cells. A dead feeder layer of nonparenchymal cells was almost as effective as a feeder layer of viable nonparenchymal cells. These results suggest that the stimulation of DNA synthesis in parenchymal hepatocytes was not due to some soluble factors secreted by nonparenchymal liver cells but to an insoluble material(s) produced by the nonparenchymal liver cells. This insoluble material(s) was collagenase- and acid-sensitive, suggesting that it was a protein containing collagen. The effect of nonparenchymal liver cells was specific: coculture with hepatoma cells, liver epithelial cells, or Swiss 3T3 cells did not stimulate DNA synthesis in parenchymal hepatocytes. Added insulin and epidermal growth factor showed additive effects with nonparenchymal cells in the cocultures. These results suggest that DNA synthesis in parenchymal hepatocytes is stimulated not only by various humoral growth factors but also by cell-cell interaction between parenchymal and nonparenchymal hepatocytes, possibly endothelial cells. This cell-cell interaction may be important in repair of liver damage and liver regeneration.  相似文献   

4.
Hepatic fibrosis due to iron overload is mediated by oxidant stress. The basic mechanisms underlying this process in vivo are still little understood. Acutely iron-dosed gerbils were assayed for lobular accumulation of hepatic lipid peroxidation by-products, oxidant-stress gene response, mitochondrial energy-dependent functions, and fibrogenesis. Iron overload in nonparenchymal cells caused an activation of hepatic stellate cells and fibrogenesis. Oxidant-stress gene response and accumulation of malondialdehyde–protein adducts were restricted to iron-filled nonparenchymal cells, sparing nearby hepatocytes. Concomitantly, a significant rise in the mitochondrial desferrioxamine-chelatable iron pool associated with the impairment of mitochondrial oxidative metabolism and the hepatic ATP decrease, was detected. Ultrastructural mitochondrial alterations were observed only in nonparenchymal cells. All biochemical and functional derangements were hindered by in vivo silybin administration which blocked completely fibrogenesis. Iron-induced oxidant stress in nonparenchymal cells appeared to bring about irreversible mitochondrial derangement associated with the onset of hepatic fibrosis.  相似文献   

5.
酒精滥用是一个重大的公共健康问题。酒精通过刺激脂肪酸合成,抑制脂肪酸的氧化导致肝脏脂质积累,进而诱发肝细胞病变,导致脂肪肝的病发。从转录调控脂质代谢的改变,异常甲硫氨酸代谢对内质网应激反应的作用等方面概述酒精与脂质代谢的相互调控机制,并阐述了这些调控机制之间的内在联系以及酒精如何影响肝脏脂质代谢,从而导致脂肪肝形成的最新相关研究进展。  相似文献   

6.
Fatty liver disease (hepatosteatosis) is a common early pathology in alcohol-dependent and obese patients. Fatty acid binding protein-4 (FABP4) is normally expressed in adipocytes and macrophages and functions as a regulator of intracellular lipid movement/storage. This study sought to investigate hepatic FABP4 expression and function in alcoholic liver disease (ALD) and hepatocellular carcinoma (HCC). Using chronic ethanol fed mouse models and patient samples FABP4 expression was analyzed. Human HCC cells, and HCC cells transfected to express CYP2E1, were exposed to ethanol and analyzed for FABP4 expression, or exposed to rhFABP4 (in the absence/presence of ERK, p38-MAPK or JNK1/2 inhibitors) and cell proliferation and migration measured. Hepatosteatotic-ALD mouse models exhibited increased hepatic FABP4 mRNA and protein levels, with FABP4 expression confirmed in hepatocytes. In HCC cells, CYP2E1-dependent ethanol metabolism induced FABP4 expression in vitro and exogenous rhFABP4 stimulated proliferation and migration, effects abrogated by ERK and JNK1/2 inhibition. Increased FABP4 was also detected in ALD/ALD-HCC patients, but not patients with viral hepatitis/HCC. Collectively these data demonstrate ethanol metabolism induces hepatic FABP4 expression and FABP4 promotes hepatoma cell proliferation/migration. These data suggest liver-derived FABP4 may be an important paracrine-endocrine factor during hepatic foci expansion and/or hepatoma progression in the underlying setting of ALD.  相似文献   

7.
8.
The uptake of beta-hexosaminidase (EC 3.2.1.30) in nonparenchymal liver cells (i.e. endothelial and Kupffer's cells) and peritoneal macrophages has been determined by an enzymatic assay. A considerable uptake was noted in nonparenchymal liver cells, whereas no measurable uptake was seen in peritoneal macrophages. The endothelial cells were more active in the uptake of beta-hexosaminidase than were the Kupffer's cells. The uptake of beta-hexosaminidase by nonparenchymal liver cells showed saturation kinetics and was competitively inhibited by mannan. These findings support the concept that a cell surface receptor on nonparenchymal liver cells mediates uptake of beta-hexosaminidase and suggests a difference in the receptor mechanisms on liver and peritoneal macrophages.  相似文献   

9.
The physiological roles played by hepatocytes and nonparenchymal cells of rat liver in the metabolism of vitamin D3 have been investigated. Tritium-labeled vitamin D3 dissolved in ethanol was administered intravenously to two rats. Isolation of the liver cells 30 and 70 min after the injection showed that vitamin D3 had been taken up both by the hepatocytes and by the nonparenchymal liver cells. The relative proportion of vitamin D3 that accumulated in the nonparenchymal cells increased with time. Perfusion of the isolated rat liver with [3H] vitamin D3 added to the perfusate confirmed the ability of both cell types to efficiently take up vitamin D3 from the circulation. By a method based on high pressure liquid chromatography and isotope dilution-mass fragmentography it was found that isolated liver cells in suspension had a considerable capacity to take up vitamin D3 from the medium. About 2.5 fmol of vitamin D3 were found to be associated with each hepatocyte or nonparenchymal cell after 1 h of incubation. 25-Hydroxylation in vitro was found to be carried out only by the hepatocytes. The rate of hydroxylation was about the same whether the cells were isolated from normal or rachitic rats (3.5 and 4 pmol of 25-hydroxyvitamin D3 formed per h per 10(6) cells, respectively). The possibility that the nonparenchymal cells might serve as a storage site for vitamin D3 in the liver is discussed.  相似文献   

10.
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号