首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Wild-type (Steptoe) and abscisic acid (ABA)-deficient mutant(Az34) genotypes of barley were grown in compacted soil to examinethe potential role of ABA as a root-to-shoot signal. Root andshoot growth and leaf conductance were all reduced when plantswere grown in compacted soil with a bulk density of 1.7g cm–3,relative to uncompacted control plants (1.1 g cm–3. Theseeffects occurred in the absence of detectable changes in leafwater status or foliar abscisic acid (ABA) content. Analysisof Steptoe and Az34 xylem sap showed that the ABA concentrationwas greatly increased at 6 d after emergence (6 DAE) when seedlingswere grown in compacted soil (1.7 g cm–3); however, ABAconcentrations were never as high in the mutant as in the wildtype. The increase in xylem sap ABA concentration observed athigh bulk density was closely correlated with reductions inleaf conductance, but not leaf area. These increases were transitory,and xylem sap ABA concentrations subsequently decreased towardsthe control level by 18 DAE in both genotypes. The ABA-deficient mutant, Az34, produced a much lower leaf areathan Steptoe at a bulk density of 1.6 g cm–3. Examinationof epidermal characteristics indicates that this effect resultedmainly from reductions in cell expansion rather than cell division,suggesting that the higher ABA concentrations detected in xylemsap from the wild-type Steptoe may have exerted a positive rolein maintaining leaf expansion in this treatment. The possibleinvolvement of ABA as a root-to-shoot signal mediating the effectsof compaction stress is discussed. Key words: Soil compaction, bulk density, ABA, ABA-deficient mutant, leaf growth  相似文献   

2.
This study examined the potential role of restricted phloem export, or import of substances from the roots in the leaf growth response to root hypoxia. In addition, the effects of root hypoxia on abscisic acid (ABA) and zeatin riboside (ZR) levels were measured and their effects on in vitro growth determined. Imposition of root hypoxia in the dark when transpirational water flux was minimal delayed the reduction in leaf growth until the following light period. Restriction of phloem transport by stem girdling did not eliminate the hypoxia-induced reduction in leaf growth. In vitro growth of leaf discs was inhibited in the presence of xylem sap collected from hypoxic roots, and also by millimolar ABA. Disc growth was promoted by sap from aerated roots and by 0.1 micromolar ZR. The flux of both ABA and ZR was reduced in xylem sap from hypoxic roots. Leaf ABA transiently increased twofold after 24 hours of hypoxia exposure but there were no changes in leaf cytokinin levels.  相似文献   

3.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

4.
Intact plants and stem-girdled plants of Phaseolus vulgaris grown hydroponically were exposed to 5 degrees C for up to 4 d; stem girdling was used to inhibit the phloem transport from the leaves to the roots. After initial water stress, stomatal closure and an amelioration of root water transport properties allowed the plants to rehydrate and regain turgor. Chilling augmented the concentration of abscisic acid (ABA) content in leaves, roots and xylem sap. In intact plants stomatal closure and leaf ABA accumulation were preceded by a slight alkalinization of xylem sap, but they occurred earlier than any increase in xylem ABA concentration could be detected. Stem girdling did not affect the influence of chilling on plant water relations and leaf ABA content, but it reduced slightly the alkalinization of xylem sap and, principally, prevented the massive ABA accumulation in root tissues and the associated transport in the xylem that was observed in non-girdled plants. When the plants were defoliated just prior to chilling or after 10 h at 5 degrees C, root and xylem sap ABA concentration remained unchanged throughout the whole stress period. When the plants were chilled under conditions preventing the occurrence of leaf water deficit (i.e. at 100% relative humidity), there were no significant variations in endogenous ABA levels. The increase in root hydraulic conductance in chilled plants was a response neither to root ABA accretion, nor to some leaf-borne chemical signal transported downwards in the phloem, nor to low temperature per se, as indicated by the results of the experiments with defoliated or girdled plants and with plants chilled at 100% relative humidity. It was concluded that the root system contributed substantially to the bean's ability to cope with chilling-induced water stress, but not in an ABA-dependent manner.  相似文献   

5.
The possibility that increased soil resistance to root growth may mediate the dwarfing response associated with root-restriction stress (RRS), via an abscisic acid (ABA) transduction mechanism, was investigated by characterizing the responses of tomato plants (Lycopersicon esculentum Mill cv. Red Dwarf) and changes within the soil environment at three rooting volumes (RV) (200, 400 and 800 cm3). Plant dry weight, leaf area and stomatal conductance decreased with RRS, although leaf water potential was unaffected by RRS. The concentration of ABA within the root system ([ABA]rt) and xylem sap ([ABA]xy) increased with RRS. Increased bulk density caused soil resistance to root growth to increase with increasing RRS. Changes in the soil environment, other than bulk density, which may have induced this variation in concentrations of ABA, were either eliminated or shown not to limit plant growth. The proportional relationships between RRS and soil resistance, [ABA]rt and [ABA]xy, and the inverse relationship between RRS and plant growth, are possibly indicative of the restricted root system experiencing increased resistance to root growth, with the subsequent initiation of a cascade of growth inhibiting responses.  相似文献   

6.
Stomatal conductance of individual leaves was measured in a maize field, together with leaf water potential, leaf turgor, xylem ABA concentration and leaf ABA concentration in the same leaves. Stomatal conductance showed a tight relationship with xylem ABA, but not with the current leaf water status or with the concentration of ABA in the bulk leaf. The relationship between stomatal conductance and xylem [ABA] was common for variations in xylem [ABA] linked to the decline with time of the soil water reserve, to simultaneous differences between plants grown on compacted, non-compacted and irrigated soil, and to plant-to-plant variability. Therefore, this relationship is unlikely to be fortuitous or due to synchronous variations. These results suggest that increased concentration of ABA in the xylem sap in response to stress can control the gas exchange of plants under field conditions.  相似文献   

7.
In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.  相似文献   

8.
Novel techniques were devised to explore the mechanisms mediating the adverse effects of compacted soil on plants. These included growing plants in: (i) profiles containing horizons differing in their degree of compaction and; (ii) split-pots in which the roots were divided between compartments containing moderately (1·4 g cm ? 3) and severely compacted (1·7 g cm ? 3) soil. Wild-type and ABA-deficient genotypes of barley were used to examine the role of abscisic acid (ABA) as a root-to-shoot signal. Shoot dry weight and leaf area were reduced and root : shoot ratio was increased relative to 1·4 g cm ? 3 control plants whenever plants of both genotypes encountered severely compacted horizons. In bartey cultivar Steptoe, stomatal conductance decreased within 4 d of the first roots encountering 1·7 g cm ? 3 soil and increased over a similar period when roots penetrated from 1·7 g cm ? 3 into 1·4 g cm ? 3 soil. Conductance was again reduced by a second 1·7 g cm ? 3 horizon. These responses were inversely correlated with xylem sap ABA concentration. No equivalent stomatal responses occurred in Az34 (ABA deficient genotype), in which the changes in xylem sap ABA were much smaller. When plants were grown in 1·7 : 1·4 g cm ? 3 split-pots, shoot growth was unaffected relative to 1·4 g cm ? 3 control plants in Steptoe, but was significantly reduced in Az34. Excision of the roots in compacted soil restored growth to the 1·4 g cm ? 3 control level in Az34. Stomatal conductance was reduced in the split-pot treatment of Steptoe, but returned to the 1·4 g cm ? 3 control level when the roots in compacted soil were excised. Xylem sap ABA concentration was initially higher than in 1·4 g cm ? 3 control plants but subsequently returned to the control level; no recovery occurred if the roots in compacted soil were left intact. Xylem sap ABA concentration in the split-pot treatment of Az34 was initially similar to plants grown in uniform 1·7 g cm ? 3 soil, but returned to the 1·4 g cm ? 3 control level when the roots in the compacted compartment were excised. These results clearly demonstrate the involvement of a root-sourced signal in mediating responses to compacted soil; the role of ABA in providing this signal and future applications of the compaction procedures reported here are discussed.  相似文献   

9.
The abscisic acid (ABA)-deficient mutant of barley, Az34, exhibiteda much reduced rate of leaf expansion at a bulk density of 1.6g cm–3 as compared to the isogenic wild-type variety,Steptoe. Az34 had a consistently lower xylem sap ABA concentrationat 7 d and 14 d after emergence (DAE). The xylem sap data suggestthat ABA present at Steptoe concentrations may have a directrole in maintaining leaf expansion at the sub-critical bulkdensity (1.6 g cm–3 To test this hypothesis, additionof synthetic ABA either to the rooting environment (100 nM)or directly to the xylem sap (5 pg µl–1 to reproducethe xylem sap ABA concentrations found in Steptoe, increasedleaf expansion in Az34 to the wild-type level. Furthermore,feeding Steptoe xylem sap to Az34 produced similar effects.These experiments provide direct evidence of a positive rolefor ABA as a root-to-shoot signal which assists in maintainingleaf growth in plants experiencing subcritical levels of compactionstress. Key words: ABA-deficient mutant, leaf expansion, xylem sap, ABA  相似文献   

10.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号