首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
MLH1 and MSH2 mutations underlie 90% of hereditary nonpolyposis colorectal cancer (HNPCC) mutations. The International Society of Gastrointestinal Hereditary Tumors (InSiGHT) has established an international database of mutations associated with HNPCC. Based on the InSiGHT database and the original references that reported the mutations, we analyzed the distributions of MLH1 and MSH2 mutations in yellow race and white race respectively and compared them subsequently. We found: (1) the distributions of mutation individuals in exon 1, 17 and 19 of MLH1 gene and in exon 2 of MSH2 gene showed significant differences between the two race groups (p < 0.05); (2) the distributions of mutation types in exon 2, 7 and 18 of MLH1 and exon 10 and 16 of MSH2 showed significant differences (p < 0.05); and (3) three mutations (c.649C > T, c.1625A > T and c.1721T > C) in MLH1 and five mutations (c.23C > T, c.187dupG, c.505A > G, c.1168C > T and c.2211-6T > C) in MSH2 have much higher frequency in yellow race than those in white race. Furthermore, three mutations (c.1453G > C, c.1742C > T and c.1758dupC) in MLH1 and two mutations (c.1255C > A and c.1886A > G) in MSH2 were only found in yellow race, which implies that specific mutations in yellow race need more attention when screening mutations in these two genes.  相似文献   

2.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer susceptibility condition. Inherited mutations in at least four DNA mismatch repair genes, hMSH2, hMLH1, hPMS1, and hPMS2, are known to cause HNPCC. In this study we used denaturing gradient gel electrophoresis (DGGE) to screen for hMLH1 mutations in 34 unrelated HNPCC families (30 Dutch, 3 Italian, and 1 Danish). Ten novel pathogenic germ-line mutations (seven affecting splice sites, two frameshifts, and one in-frame deletion of a single amino acid) have been identified in 12 (35%) of these families. In a previous study, hMSH2 mutations were found in 21% of the same families. While the spectrum of mutations at the hMSH2 gene among HNPCC patients appears heterogeneous, a cluster of hMLH1 mutations has been found in the region encompassing exons 15 and 16, which accounts for 50% of all the independent hMLH1 mutations described to date and for > 20% of the unrelated HNPCC kindreds here analyzed. This unexpected finding has a great practical value in the clinical scenario of genetic services.  相似文献   

3.
Kim YM  Choe CG  Cho SK  Jung IH  Chang WY  Cho M 《BMB reports》2010,43(10):693-697
Hereditary non-polyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome characterized by predisposition to early-onset cancers. HNPCC is caused by heterozygous loss-of-function mutations within the mismatch repair genes MLH1, MSH2, MSH6, PMS1, and PMS2. We genotyped the MLH1 and MSH2 genes in patients suffering from Lynch syndrome and in 11 unrelated patients who were diagnosed with colorectal cancer and had subsequently undergone surgery. Five Lynch syndrome patients carried germline mutations in MLH1 or MSH2. Two of these were identified as known mutations in MLH1: deletion of exon 10 and a point mutation (V384D). The remaining three patients exhibited novel mutations: a duplication (937_942dupGAAGTT) in MLH1; deletion of exons 8, 9, and 10; and a point mutation in MLH1 (F396I) combined with multiple missense mutations in MSH2 (D295G, K808E, Q855P, and I884T). The findings underline the importance of efficient pre-screening of conspicuous cases.  相似文献   

4.
The identification of germline mutations in families with HNPCC is hampered by genetic heterogeneity and clinical variability. In previous studies, MSH2 and MLH1 mutations were found in approximately two-thirds of the Amsterdam-criteria-positive families and in much lower percentages of the Amsterdam-criteria-negative families. Therefore, a considerable proportion of HNPCC seems not to be accounted for by the major mismatch repair (MMR) genes. Does the latter result from a lack of sensitivity of mutation detection techniques, or do additional genes underlie the remaining cases? In this study we address these questions by thoroughly investigating a cohort of clinically selected North American families with HNPCC. We analyzed 59 clinically well-defined U.S. families with HNPCC for MSH2, MLH1, and MSH6 mutations. To maximize mutation detection, different techniques were employed, including denaturing gradient gel electrophoresis, Southern analysis, microsatellite instability, immunohistochemistry, and monoallelic expression analysis. In 45 (92%) of the 49 Amsterdam-criteria-positive families and in 7 (70%) of the 10 Amsterdam-criteria-negative families, a mutation was detected in one of the three analyzed MMR genes. Forty-nine mutations were in MSH2 or MLH1, and only three were in MSH6. A considerable proportion (27%) of the mutations were genomic rearrangements (12 in MSH2 and 2 in MLH1). Notably, a deletion encompassing exons 1-6 of MSH2 was detected in seven apparently unrelated families (12% of the total cohort) and was subsequently proven to be a founder. Screening of a second U.S. cohort with HNPCC from Ohio allowed the identification of two additional kindreds with the identical founder deletion. In the present study, we show that optimal mutation detection in HNPCC is achieved by combining accurate and expert clinical selection with an extensive mutation detection strategy. Notably, we identified a common North American deletion in MSH2, accounting for approximately 10% of our cohort. Genealogical, molecular, and haplotype studies showed that this deletion represents a North American founder mutation that could be traced back to the 19th century.  相似文献   

5.
The aim of this work was to study the mutation profile in hMSH2 and hMLH1 genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients in India. On the basis of the Bethesda criteria, 31 colorectal cancer patients were studied first for microsatellite instability, using the five markers recommended by the Bethesda guidelines. Twelve of 31 tumor samples were found to be MSI-H, 9 of 31 were MSI-L, and the rest were MSS. The 12 patients with MSI-H were analyzed for mutations in hMSH2 and hMLH1 genes using PCR-denaturing high-performance liquid chromatography (dHPLC), followed by sequencing of samples showing abnormal peaks. Of the five mutations detected, three were found to be deleterious mutations (hMSH2-R680X, hMLH1-E671X, and a splice junction mutation IVS16-2A --> G); one had a mutation of probable significance (hMLH1-C680G) and one was of unknown significance (hMSH2-R171K). This study has also shown that most of the early-onset colon (4/7) and early-onset rectal (15/21) cancers are MSS or MSI-L. This is the first study to describe the mutation in hMSH2 and hMLH1 in Indian patients, a low incidence region for colorectal cancer. A two-stage procedure using MSI testing followed by PCR-dHPLC was found to be an efficient method in studying the mutation profile in high-risk patients.  相似文献   

6.
Hereditary nonpolyposis colorectal cancer (HNPCC) (Amsterdam criteria) is often caused by mutations in mismatch repair (MMR) genes, and tumors of patients with HNPCC show microsatellite instability (MSI-high phenotype). Germline mutations of MMR genes have rarely been found in families that have HNPCC or suspected HNPCC and that do not show microsatellite instability (MSI-low phenotype). Therefore, an MSI-high phenotype is often used as an inclusion criterion for mutation testing of MMR genes. Correction of base-base mismatches is the major function of MSH6. Since mismatches present with an MSI-low phenotype, we assumed that the phenotype in patients with HNPCC-related tumors might be associated with MSH6 germline mutations. We divided 36 patients with suspected HNPCC into an MSI-low group (n=18) and an MSI-high group (n=18), on the basis of the results of MSI testing. Additionally, three unrelated patients from Amsterdam families with MSI-low tumors were investigated. All patients were screened for MSH2, MLH1, and MSH6 mutations. Four presumably causative MSH6 mutations were detected in the patients (22%) who had suspected HNPCC and MSI-low tumors. Furthermore, we detected one frameshift mutation in one of the three patients with HNPCC and MSI-low tumors. In the MSI-high group, one MSH6 missense mutation was found, but the same patient also had an MLH1 mutation, which may explain the MSI-high phenotype. These results suggest that MSH6 may be involved in a substantial proportion of patients with HNPCC or suspected HNPCC and MSI-low tumors. Our data emphasize that an MSI-low phenotype cannot be considered an exclusion criterion for mutation testing of MMR genes in general.  相似文献   

7.
Hereditary non-polyposis colorectal cancer (HNPCC) is a clinical syndrome characterised by an inherited predisposition to early onset colorectal and uterine cancers and an increased incidence of other cancers. It is caused by germline defects in the human mismatch repair genes. Defects in two of the known mismatch repair genes (namely hMSH2 and hMLH1) account for over 90% of mutations found in HNPCC families. In this study we have identified 14 families that fulfilled the clinical criteria for HNPCC and screened the hMSH2 and hMLH1 genes for germline mutations using single-strand conformational polymorphism (SSCP) analysis and DNA sequencing. Seven mutations were identified. Of these, there were five frameshifts, one missense mutation and a further novel mutation that involved separate transition and transversion changes in successive amino acid residues. Three of the mutations were in hMSH2 and four in hMLH1. The identification of germ-line mutations in an HNPCC family enables targeted surveillance and the possibility of early curative intervention. SSCP is a simple and effective method for identifying most mutations in the human mismatch repair genes using DNA from fresh, frozen or archival material. Received: 24 July 1996 / Revised: 26 September 1996  相似文献   

8.
To explore the characteristics of DNA mismatch repair gene mutations in Chinese patients with hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome, the MLH1 and MSH2 genes from probands of 76 HNPCC families were sequenced. By doing so, two frame-shift mutations, three splice-site mutations and fourteen missense mutations (thirteen missense mutations and one nonsense mutation) were identified in the MLH1 gene. In addition, one splice-site mutation and six missense mutations were detected in the MSH2 gene. None of these mutations were detected in 100 matched healthy controls. The remaining mutation-negative cases were subjected to large fragment deletion analysis using multiplex ligation-dependent probe amplification (MLPA). By doing so, five large fragment deletions were detected in the MSH2 gene. No large fragment deletions were detected in the MLH1 gene. We conclude that the MLH1 and MSH2 genes in Chinese HNPCC families exhibit broad mutation spectra.  相似文献   

9.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a common autosomal dominant cancer-susceptibility condition characterized by early onset colorectal cancer. Germ-line mutations in one of four DNA mismatch repair (MMR) genes, hMSH2, hMLH1, hPMS1, or hPMS2, are known to cause HNPCC. Although many mutations in these genes have been found in HNPCC kindreds complying with the so-called Amsterdam criteria, little is known about the involvement of these genes in families not satisfying these criteria but showing clear-cut familial clustering of colorectal cancer and other cancers. Here, we applied denaturing gradient-gel electrophoresis to screen for hMSH2 and hMLH1 mutations in two sets of HNPCC families, one set comprising families strictly complying with the Amsterdam criteria and another set in which at least one of the criteria was not satisfied. Interestingly, hMSH2 and hMLH1 mutations were found in 49% of the kindreds fully complying with the Amsterdam criteria, whereas a disease-causing mutation could be identified in only 8% of the families in which the criteria were not satisfied fully. In correspondence with these findings, 4 of 6 colorectal tumors from patients belonging to kindreds meeting the criteria showed microsatellite instability, whereas only 3 of 11 tumors from the other set of families demonstrated this instability. Although the number of tumors included in the study admittedly is small, the frequencies of mutations in the MMR genes show obvious differences between the two clinical sets of families. These results also emphasize the practical importance of the Amsterdam criteria, which provide a valid clinical subdivision between families, on the basis of their chance of carrying an hMSH2 or an hMLH1 mutation, and which bear important consequences for genetic testing and counseling and for the management of colorectal cancer families.  相似文献   

10.
Mismatch repair defects in cancer   总被引:23,自引:0,他引:23  
Post-replicative mismatch repair in humans utilises the hMSH2, hMSH6, hMSH3, hMLH1 and hPMS2 genes and possibly the newly identified hMLH3 gene. Recently, a link has been established between hMSH6 mutations and 'atypical' hereditary non-polyposis colon cancer (HNPCC) with an increased incidence of endometrial cancers. To satisfy the need for a diagnostic test capable of differentiating between pathogenic mutations and polymorphisms, several functional assays that fulfil these criteria have been described. These should allow for better diagnosis of HNPCC.  相似文献   

11.
Denaturing high-performance liquid chromatography (DHPLC) is an efficient method for detection of mutations involving a single or few numbers of nucleotides, and it has been successfully used for mutation detection in disease-related genes. Colorectal cancer is one of the most common cancers, and mutations in the genes for hereditary nonpolyposis colon cancer (HNPCC), hMLH1 and hMSH2, also involve mainly point mutations. Sequence analysis is supposed to be a screening method with high sensitivity; however, it is time-consuming and expensive. We therefore decided to test sensitivity and reproducibility of DHPLC for 71 sequence variants in hMLH1 and hMSH2 initially found by sequence analysis in DNA samples of German HNPCC patients. DHPLC conditions of the PCR products were based on the melting pattern of the wild-type sequence of the corresponding PCR fragments. All but one of the 71 mutations was detected using DHPLC (sensitivity of 97%). Running time per sample averaged only 7 min, and the system is highly automated. Thus DHPLC is a rapid and sensitive method for the detection of hMLH1 and hMSH2 sequence variants.  相似文献   

12.
Mismatch repair (MMR) gene mutations cause hereditary nonpolyposis colorectal cancer (HNPCC), a common form of familial colorectal cancer. Among MMR genes, germline MSH6 mutations are often observed in HNPCC-like families with an increased frequency of endometrial cancer. We have previously shown that a proportion of women affected with double primary cancers of the colorectum and endometrium carry germline MSH2 or MLH1 mutations and, thus, belong to HNPCC families. In this study, we have investigated the specific contribution of MSH6 defects to such double primary patients. By sequence analysis of the entire coding region of MSH6, three putative missense mutations were identified in patients with atypical family histories that do not meet HNPCC criteria. Moreover, one of these mutations, a novel substitution Arg901 His, was found in a patient previously shown to carry a truncating germline MLH1 mutation. Thus, MSH6 mutations are likely to contribute to the etiology of double primary cancers of the colorectum and endometrium.  相似文献   

13.
Germline mutations in two human mismatch repair (MMR) genes, hMSH2 and hMLH1, appear to account for approximately 70% of the common cancer susceptibility syndrome hereditary nonpolyposis colorectal cancer (HNPCC). Although the hMLH1 protein has been found to copurify with another MMR protein hPMS2 as a heterodimer, their function in MMR is unknown. In this study, we have identified the physical interaction regions of both hMLH1 with hPMS2. We then examined the effects of hMLH1 missense alterations found in HNPCC kindreds for their interaction with hPMS2. Four of these missense alterations (L574P, K616Delta, R659P, and A681T) displayed >95% reduction in binding to hPMS2. Two additional missense alterations (K618A and K618T) displayed a >85% reduction in binding to hPMS2, whereas three missense alterations (S44F, V506A, and E578G) displayed 25-65% reduction in binding to hPMS2. Interestingly, two HNPCC missense alterations (Q542L and L582V) contained within the consensus interaction region displayed no effect on interaction with hPMS2, suggesting that they may affect other functions of hMLH1. These data confirm that functional deficiencies in the interaction of hMLH1 with hPMS2 are associated with HNPCC as well as suggest that other unknown functional alteration of the human MutL homologues may lead to tumorigenesis in HNPCC kindreds.  相似文献   

14.
Hereditary nonpolyposis colorectal cancer (HNPCC) is due to defects in DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and to a lesser extent PMS2. Of 466 suspected HNPCC families, we defined 54 index patients with either tumors of high microsatellite instability (MSI-H) and/or loss of expression for either MLH1, MSH2, and/or MSH6, but without a detectable pathogenic point mutation in these genes. This study cohort was augmented to 64 patients by 10 mutation-negative index patients from Amsterdam families where no tumors were available. Deletion/duplication screening using the multiplex ligation-dependent probe amplification (MLPA) revealed 12 deletions in MSH2 and two deletions in MLH1. These deletions constitute 17% of pathogenic germline alterations but elucidate the susceptibility to HNPCC in only 22% of the mutation-negative study cohort, pointing towards other mutation mechanisms for an inherited inactivation of MLH1 or MSH2. We describe here four novel deletions. One novel and one known type of deletion were found for three and two unrelated families, respectively. MLPA analysis proved a reliable method for the detection of genomic deletions in MLH1 and MSH2; however, sequence variations in the ligation-probe binding site can mimic single exon deletions.  相似文献   

15.
Analysis of significance of age at cancer diagnosis as a factor allowing identification of a subgroup of patients with a high frequency of hMSH2 and hMLH1 mutations among families that fulfil suspected HNPCC criteria was performed. DNA from thirty-one unrelated patients affected by colorectal cancer from families matching the above criteria were studied by direct sequencing for occurrence of hMSH2 and hMLH1 gene mutations. Seven unequivocal constitutional mutations were detected: five in the hMLH1 gene and two in the hMSH2 gene. Additionally, one hMLH1 alteration of unknown significance was found. All seven mutations were found in a subgroup of 19 patients with cancer diagnosed before the age of 50 years. In a subgroup of 12 patients with cancer diagnosed at an older age only one case with hMLH1 alteration of unknown significance was detected. Our results indicate that early age at cancer diagnosis seems to be a crucial pedigree factor in discrimination of patients with hMSH2 or hMLH1 mutations among families suspected of HNPCC and matching criteria I of ICG-HNPCC.  相似文献   

16.
Functional analysis of HNPCC-related missense mutations in MSH2   总被引:10,自引:0,他引:10  
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.  相似文献   

17.
Muir-Torre syndrome (MTS) is an autosomal dominant disease defined by the coincidence of at least one sebaceous skin tumor and one internal malignancy. About half of MTS patients are affected by colorectal cancer. In a subgroup of MTS patients the disease has an underlying DNA mismatch-repair (MMR) defect and thus is allelic to hereditary nonpolyposis colorectal cancer (HNPCC). The purpose of this study was to examine to what extent germ-line mutations in DNA MMR genes are the underlying cause of the MTS phenotype. We ascertained 16 MTS patients with sebaceous skin tumors and colorectal cancer, and we examined their skin and visceral tumors for microsatellite instability. All the patients exhibited high genomic instability in at least one tumor. The search for germ-line mutations in the hMSH2 and hMLH1 genes in 13 of the MTS patients revealed truncating mutations in 9 (69%): eight mutations in the hMSH2 gene and one in the hMLH1 gene. This is the first systematic search for germ-line mutations in patients ascertained on the basis of sebaceous skin tumors. Our results indicate that (1) MTS patients exhibit significantly more mutations in the hMSH2 gene than in the hMLH1 gene; and (2) the subpopulation of MTS patients who are also affected by colorectal cancer, irrespective of family history and age at onset of tumors, may have a likelihood for an underlying DNA MMR defect similar to that for patients with a family history fulfilling the strict clinical criteria for HNPCC.  相似文献   

18.
Single base substitutions in DNA mismatch repair genes which are predicted to lead either to missense or silent mutations, or to intronic variants outside the highly conserved splicing region are often found in hereditary nonpolyposis colorectal cancer (HNPCC) families. In order to use the variants for predictive testing in persons at risk, their pathogenicity has to be evaluated. There is growing evidence that some substitutions have a detrimental influence on splicing. We examined 19 unclassified variants (UVs) detected in MSH2 or MLH1 genes in patients suspected of HNPCC for expression at RNA level. We demonstrate that 10 of the 19 UVs analyzed affect splicing. For example, the substitution MLH1,c.2103G>C in the last position of exon 18 does not result in a missense mutation as theoretically predicted (p.Gln701His), but leads to a complete loss of exon 18. The substitution MLH1,c.1038G>C (predicted effect p.Gln346His) leads to complete inactivation of the mutant allele by skipping of exons 10 and 11, and by activation of a cryptic intronic splice site. Similarly, the intronic variant MLH1,c.306+2dupT results in loss of exon 3 and a frameshift mutation due to a new splice donor site 5 bp upstream. Furthermore, we confirmed complete exon skipping for the mutations MLH1,c.1731G>A and MLH1,c.677G>A. Partial exon skipping was demonstrated for the mutations MSH2,c.1275A>G, MLH1,c.588+5G>A, MLH1,c.790+4A>G and MLH1,c.1984A>C. In contrast, five missense mutations (MSH2,c.4G>A, MSH2,c.2123T>A, MLH1,c.464T>G, MLH1,c.875T>C and MLH1,c.2210A>T) were found in similar proportions in the mRNA as in the genomic DNA. We conclude that the mRNA examination should precede functional tests at protein level. Databases: HNPCC – OMIM 114500, MSH2 – OMIM: 120435; GenBank: NM_000251.1, MLH1 – OMIM: 120436; GenBank: NM_000249.2, InSiGHT mutation database: , Programs: BDGP: , ESEfinder program:  相似文献   

19.
The MSH6 gene is one of the mismatch-repair genes involved in hereditary nonpolyposis colorectal cancer (HNPCC). Three hundred sixteen individuals who were known or suspected to have HNPCC were analyzed for MSH6 germline mutations. For 25 index patients and 8 relatives with MSH6 variants, molecular and clinical features are described. For analysis of microsatellite instability (MSI), the five consensus markers were used. Immunohistochemical analysis of the MLH1, MSH2, and MSH6 proteins was performed. Five truncating MSH6 mutations, of which one was detected seven times, were found in 12 index patients, and 10 MSH6 variants with unknown pathogenicity were found in 13 index patients. Fourteen (54%) of 26 colorectal cancers (CRCs) and endometrial cancers showed no, or only weak, MSI. Twelve of 18 tumors of truncating-mutation carriers and 3 of 17 tumors of missense-mutation carriers showed loss of MSH6 staining. Six of the families that we studied fulfilled the original Amsterdam criteria; most families with MSH6, however, were only suspected to have HNPCC. In families that did not fulfill the revised Amsterdam criteria, the prevalence of MSH6 variants is about the same as the prevalence of those in MLH1/MSH2. Endometrial cancer and/or atypical hyperplasia were diagnosed in 8 of 12 female carriers of MSH6 truncating mutations. Most CRCs were localized distally in the colon. Although, molecularly, missense variants are labeled as doubtfully pathogenic, clinical data disclose a great resemblance between missense-variant carriers and truncating-mutation carriers. We conclude that, in all patients suspected to have HNPCC, MSH6-mutation analysis should be considered. Neither MSI nor immunohistochemistry should be a definitive selection criterion for MSH6-mutation analysis.  相似文献   

20.
Hereditary nonpolyposis colorectal cancer (HNPCC) describes the condition of a disparate group of families that have in common a predisposition to colorectal cancer in the absence of a premalignant phenotype. The genetic basis of this disease has been linked to mutations in genes associated with DNA mismatch repair. A large proportion of families harbor changes in one of two genes, hMSH2 and hMLH1. Approximately 35% of families in which the diagnosis is based on the Amsterdam criteria do not appear to harbor mutations in DNA-mismatch-repair genes. In this report we present data from a large series of families with HNPCC and indicate that there are subtle differences between families that harbor germline changes in hMSH2 and families that harbor hMLH1 mutations. Furthermore, there are differences between the mutation-positive group (hMSH2 and hMLH1 combined) of families and the mutation-negative group of families. The major findings identified in this study focus primarily on the extracolonic disease profile observed between the mutation-positive families and the mutation-negative families. Breast cancer was not significantly overrepresented in the hMSH2 mutation-positive group but was overrepresented in the hMLH1 mutation-positive group and in the mutation-negative group. Prostate cancer was not overrepresented in the mutation-positive groups but was overrepresented in the mutation-negative group. In age at diagnosis of colorectal cancer, there was no difference between the hMSH2 mutation-positive group and the hMLH1 mutation-positive group, but there was a significant difference between these two groups and the mutation-negative group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号