首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 136 毫秒
1.
木聚糖降解酶系基因代谢调控研究进展   总被引:1,自引:0,他引:1  
木聚糖是半纤维素的主要组成部分,是一类数量很大的再生生物资源,工业利用前景广阔。木聚糖降解需要多种酶的参与,主要有木聚糖酶、木糖苷酶、α-葡萄糖醛酸酶、乙酰木聚糖酯酶、阿拉伯糖酶、阿魏酸酯酶、p-香豆酸酯酶等。主要综述了木聚糖降解酶系基因代谢调控的研究进展,主要包括转录激活因子XlnR、抑制蛋白CreA、不同诱导物、pH值、HAP-CCAAT复合物等对木聚糖降解酶系基因表达的影响,最后探讨了木聚糖降解酶系基因代谢调控存在的问题,并对今后的研究进行了展望。  相似文献   

2.
木聚糖是植物细胞壁中含量最丰富的非纤维素多糖,大约占陆地生物质资源的20%-35%。不同物种来源的木聚糖结构因取代方式不同而具有广泛的异质性,这对生物质资源向生物燃料和其他高值产品高效转化提出了重大挑战。因此,需要开发由不同类型酶组成的最佳混合物以有效糖化木聚糖类底物。但是针对特定类型的底物设计高效降解酶系十分困难,应考虑底物的类型、底物的组成和物理性质、多糖的聚合度以及不同降解酶组分的生化性质等。本文从不同植物木聚糖的结构异质性与合成复杂性方面展示了其抗降解屏障,同时介绍了木聚糖主链降解酶系及侧链降解酶系的多样性以及协同降解作用,综述了复杂生境中微生物种群产生的混合酶系、降解菌株产生的高效酶系,以及基于特定木聚糖底物改造并定制简化高效的酶系统。随着不同种类木聚糖精细结构和木聚糖降解酶底物特异性的深入研究,针对特定底物类型进行绿色高效木聚糖酶系定制,加速木聚糖类底物的降解,从而实现木质纤维素资源的绿色高值化利用。  相似文献   

3.
微生物木聚糖降解酶系统   总被引:2,自引:0,他引:2  
木聚糖类半纤维素是产量仅次于纤维素的植物多糖 ,其结构要比纤维素复杂得多 ,完全降解木聚糖 ,实现植物残体的生物转化需要多种水解酶 (即木聚糖降解酶系统 )的协同作用。木聚糖酶在食品、饲料、纺织、能源工业 ,特别是在纸浆和造纸工业中有着广阔的应用前景 ,如人们将极端嗜热和嗜碱菌的木聚糖酶基因克隆到现有工程菌中生产工业用酶 ,用于纸浆的生物漂白和饲料加工。但是木聚糖资源的开发利用要求完整的酶系统。人们通过对具有木聚糖降解酶系统微生物的研究 ,运用基因工程技术将其构建成发酵工程菌 ,直接利用半纤维素生产单细胞蛋白 ;或者…  相似文献   

4.
将木质纤维素类生物质生物转化生产液体燃料,如纤维素乙醇和大宗化学品,对缓解当前人类社会面临的能源和资源危机以及保护环境具有重要意义。半纤维素是木质纤维素类生物质的主要组成成分之一,它的生物降解转化对实现木质纤维素生物炼制意义重大。由于半纤维素糖种类的多样性和半纤维素结构的复杂性,需要一个复杂的半纤维素酶系才能完成对半纤维素的有效降解。除了木聚糖酶等以外,β-木糖苷酶也是半纤维素酶系的主要组分。在半纤维素降解过程中,β-木糖苷酶将木聚糖酶的水解产物木寡糖和木二糖水解为木糖,不仅在木聚糖的彻底降解过程中起着重要作用,而且可以缓解木寡糖对木聚糖酶和纤维素酶的抑制作用。该文综述了目前在β-木糖苷酶方面的研究进展,包括β-木糖苷酶的分类、酶学性质、酶结构及其催化机制、基因的克隆与表达等,并对β-木糖苷酶在纤维素乙醇生产中的应用情况进行了简述。  相似文献   

5.
乙酰木聚糖酯酶可以水解乙酰化木聚糖中的O-乙酰取代基团,消除该基团对木聚糖酶水解的空间阻碍作用,增强木聚糖酶对木聚糖的亲和力和降解能力。以白色链霉菌基因组为模板,利用简并PCR和TAIL-PCR扩增获得长约741 bp阅读框片段,编码247个氨基酸。生物信息学分析表明,该多肽片段具有AXE1家族蛋白保守区域;与已知的乙酰木聚糖酯酶蛋白C端区相比,相似性较高,二级和三级结构空间排布特点极为相似;初步判定该多肽片段为白色链霉菌乙酰木聚糖酯酶的C端区域。  相似文献   

6.
食用菌半纤维素酶系研究进展   总被引:3,自引:0,他引:3  
半纤维素是一类取之不尽而又亟待开发利用的碳水化合物。对食用菌半纤维素酶系的研究已经积累了诸多资料,主要包括β-1,4-内切木聚糖酶、β-木糖苷酶、α-阿拉伯呋喃糖苷酶、乙酰木聚糖酯酶、α-葡萄糖醛酸酶的研究。主要对半纤维素酶系,尤其是木聚糖酶的生物化学与分子生物学研究进行了简要概括,包括结构、酶学性质、基因的克隆与表达等,并综述了在食用菌生产中半纤维素酶活性的变化,最后展望了食用菌半纤维素酶系今后的主要研究方向。  相似文献   

7.
微生物木聚糖降解酶研究进展及应用前景   总被引:32,自引:0,他引:32  
木聚糖是植物半纤维素的主要成分,它是除纤维素外,自然界中最为丰富的多糖。木聚糖的基本结构单元是由β-1.4或β-1.3糖苷键连接的多聚木糖链,在D-木糖的第二位氧上连接有D-葡萄糖醛酸或4-O-甲基葡萄糖醛酸或在第三位氧上连接有L-阿拉伯呋喃糖。有些木聚糖还在第二或第三位氧上发生乙酰化。不同来源的木聚糖在结构上有一定差异。木聚糖酶是一类木聚糖降解酶系(表1),对降解自然界大量存在的半纤维素起着重要作用。它们不但可以降解木聚糖生成木糖,而且能以农作物残渣中的半纤维素为原料生产经济价值较高的产品。由…  相似文献   

8.
以枯草芽胞杆菌CICC 20034为研究对象,对其分泌的高相对分子质量酯酶进行鉴定,并考察诱导剂对其活力的影响。结果表明:枯草芽胞杆菌CICC 20034可分泌一种相对分子质量为1.07×105的酯酶,经蛋白质质谱鉴定为乙酰木聚糖酯酶,单体分相对子质量为3.56×104。在发酵培养基中添加乙酸乙酯和木糖可以显著的促进乙酰木聚糖酯酶的活力,而三丁酸甘油酯和大分子诱导剂——木聚糖、玉米芯粉和壳聚糖对酯酶的活力几乎无促进作用。枯草芽胞杆菌CICC 20034以乙酸乙酯为诱导剂时最高比酶活为0.62 U/mL,为已知报道的野生细菌乙酰木聚糖酯酶的最高酯酶活力。  相似文献   

9.
根据Gen Bank数据库中已报道的灰色链霉菌(Streptomyces griseus)全基因组序列,分析得到假定的乙酰木聚糖酯酶基因序列并设计引物;利用分子克隆的方法得到该菌株基因组中乙酰木聚糖酯酶基因,并构建原核表达载体p ET28a-Sgraxe,经IPTG诱导表达重组Sgr Axe,Ni-NTA亲和层析法纯化该蛋白。结果显示,克隆得到乙酰木聚糖酯酶基因axe,其序列全长1 008 bp,编码336个氨基酸。SDS-PAGE检测带有p ET28a-Sgraxe转化菌株诱导表达产物相对分子量约为37 k D,与理论值相符。纯化的重组Sgr Axe酶学性质表明,该酶最适反应温度为50℃,最适p H8.0,热稳定性较强,p H作用范围广;金属离子对酶均表现为抑制作用,尤其是Zn2+严重抑制酶活力;重组酶特征的分析揭示了其在工业中潜在的应用价值。  相似文献   

10.
自然界中多糖类生物质资源十分丰富,然而其复杂的抗降解屏障限制了生物转化的进程.近年来,随着生物质多糖结构的快速解析以及大量多糖降解酶的鉴定研究,针对不同底物结构或产物需求,仿制高效微生物多糖代谢途径,精确定制多糖降解酶系,促进生物质高效转化已成为可能.本文分析中性多糖(纤维素和木聚糖)、碱性多糖(几丁质和壳聚糖)以及酸性多糖(褐藻胶)的精细结构组成与基团性质,总结3类多糖主要降解酶的活性架构特征及其底物精确结合模式.文章还阐述蛋白质工程设计与定制策略,针对酶分子不同功能区的分析,可为酶分子的功能快速设计与改造提供靶点,以获得适宜于工业应用的高效酶分子,此外,根据微生物胞外降解酶系的降解次序与协同关系,可基于应用需求精确定制复杂多糖降解酶系,实现生物质的高效与高值降解转化.  相似文献   

11.
Mesophilic and thermophilic strains of actinomycetes were grown on media containing graminaceous xylan or lignocellulose. Aliquots of the culture fluids were sampled and assayed for enzyme activities involved in the degradation of hemicellulose. Xylanase, acetyl esterase and α-arabinofuranosidase activities could be detected after different times of incubation; their production was also dependent on the growth medium. The highest levels of xylanase activity were found in cultures of strains of Streptomyces, Actinomadura sp. and Saccharomonospora viridis. Streptomyces cyaneus produced the highest amount of arabinofuranosidase whereas acetyl esterase activities were highest in S. cyaneus, S. viridis and Pseudonocardia thermophila .  相似文献   

12.
A heteroxylan was isolated from Eucalyptus globulus wood by extraction of peracetic acid delignified holocellulose with dimethyl sulfoxide. Besides (1-->4)-linked beta-D-xylopyranosyl units of the backbone and short side chains of terminal (1-->2)-linked 4-O-methyl-alpha-D-glucuronosyl residues (MeGlcA) in a 1:10 molar ratio, this hemicellulose contained galactosyl and glucosyl units attached at O-2 of MeGlcA originating from rhamnoarabinogalactan and glucan backbones, respectively. About 30% of MeGlcA units were branched at O-2. The O-acetyl-(4-O-methylglucurono)xylan showed an acetylation degree of 0.61, as determined by 1H NMR spectroscopy, and a weight-average molecular weight (M(w)) of about 36 kDa (P=1.05) as revealed from size-exclusion chromatography (SEC) analysis. About half of the beta-D-xylopyranosyl units of the backbone were found as acetylated moieties at O-3 (34 mol%), O-2 (15 mol%) or O-2,3 (6 mol%). Practically, all beta-D-xylopyranosyl units linked at O-2 with MeGlcA residues were 3-O-acetylated (10 mol%).  相似文献   

13.
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.  相似文献   

14.
An acetylxylan esterase (EC 3.1.1.6) was purified to apparent homogeneity from the nonsedimentable extracellular culture fluid of Fibrobacter succinogenes S85 grown on cellulose. This enzyme had an apparent molecular mass of 55 kDa and an isoelectric point of 4.0. The temperature and pH optima were 45 degrees C and 7.0, respectively. The apparent Km and Vmax were 2.7 mM and 9,100 U/mg, respectively, for the hydrolysis of alpha-naphthyl acetate. The enzyme cleaved acetyl residues from birchwood acetylxylan but did not hydrolyze carboxymethylcellulose, larchwood xylan, ferulic acid-arabinose-xylose polymer, p-nitrophenyl-alpha-L-arab-inofuranoside, or longer-chain naphthyl fatty acid esters. The esterase enzyme may play a role in enhancing hemicellulose degradation by F. succinogenes, thereby allowing it greater access to cellulose present in forage cell walls.  相似文献   

15.
The lignocellulolytic fungus Aureobasidium pullulans NRRL Y 2311-1 produces feruloyl esterase activity when grown on birchwood xylan. Feruloyl esterase was purified from culture supernatant by ultrafiltration and anion-exchange, hydrophobic interaction, and gel filtration chromatography. The pure enzyme is a monomer with an estimated molecular mass of 210 kDa in both native and denatured forms and has an apparent degree of glycosylation of 48%. The enzyme has a pI of 6.5, and maximum activity is observed at pH 6.7 and 60 degrees C. Specific activities for methyl ferulate, methyl p-coumarate, methyl sinapate, and methyl caffeate are 21.6, 35.3, 12.9, and 30.4 micro mol/min/mg, respectively. The pure feruloyl esterase transforms both 2-O and 5-O arabinofuranosidase-linked ferulate equally well and also shows high activity on the substrates 4-O-trans-feruloyl-xylopyranoside, O-[5-O-[(E)-feruloyl]-alpha-L-arabinofuranosyl]-(1,3)-O-beta-D-xylopyranosyl-(1,4)-D-xylopyranose, and p-nitrophenyl-acetate but reveals only low activity on p-nitrophenyl-butyrate. The catalytic efficiency (k(cat)/K(m)) of the enzyme was highest on methyl p-coumarate of all the substrates tested. Sequencing revealed the following eight N-terminal amino acids: AVYTLDGD.  相似文献   

16.
17.
Both beta-xylanase and beta-xylosidase were purified to homogeneity from a xylose-grown culture of Aureobasidium pullulans. Cellular distribution studies of enzyme activities revealed that beta-xylanase was an extracellular enzyme, during both the exponential and stationary phases, whereas beta-xylosidase was mostly periplasmic associated. The beta-xylanase exhibited very high specificity for xylan extracted from Eucalyptus grandis dissolving pulp, whereas the beta-xylosidase was only active on p-nitrophenyl xyloside and xylobiose. Comparison of kcat/Km ratios showed that the beta-xylanase hydrolyzed xylan from dissolving pulp 1.3, 2.1, and 2. 3 times more efficiently than Eucalyptus hemicellulose B, Eucalyptus hemicellulose A, and larchwood xylan, respectively. The beta-xylosidase exhibited a transxylosylation reaction during the hydrolysis of xylobiose. When applied on acid sulfite pulp, both enzymes released xylose and hydrolyzed xylan to a different extent. Although beta-xylosidase (0.4 U/g pulp) liberated more xylose from pulp than beta-xylanase (4.7 U/g pulp), it was responsible for only 3% of xylan solubilization. Treatment of pulp with beta-xylanase liberated 51.7 microgram of xylose/g and hydrolyzed 10% of xylan. The two enzymes acted additively on pulp and removed 12% of pulp xylan. A synergistic effect in terms of release of xylose from pulp was observed when the enzyme mixture of beta-xylanase and beta-xylosidase was supplemented with beta-mannanase. However, this did not result in further enzymatic degradation of pulp xylan. Both beta-xylanase and beta-xylosidase altered the carbohydrate composition of sulfite pulp by increasing the relative cellulose content at the expense of reduced hemicellulose content of pulp.  相似文献   

18.
Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 (CE15) are involved in microbial degradation of lignocellulosic plant materials. GEs are capable of degrading complex polymers of lignin and hemicellulose cleaving ester bonds between glucuronic acid residues in xylan and lignin alcohols. GEs promote separation of lignin, hemicellulose and cellulose which is crucial for efficient utilization of biomass as an energy source and feedstock for further processing into products or chemicals. Genes encoding GEs are found in both fungi and bacteria, but, so far, bacterial GEs are essentially unexplored, and despite being discovered >10?years ago, only a limited number of GEs have been characterized. The first laboratory scale example of improved xylose and glucuronic acid release by the synergistic action of GE with cellulolytic enzymes was only reported recently (improved C5 sugar and glucuronic acid yields) and, until now, not much is known about their biotechnology potential. In this review, we discuss the diversity, structure and properties of microbial GEs and consider the status of their action on natural substrates and in biological systems in relation to their future industrial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号