首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
昆虫作为通过可变剪切调控性别决定的生物,拥有着保守性与多样性并存的性别决定机制。快速进化的上游性别决定初始信号使得几乎共享相同基因组的两性个体在形态、生理、行为等方面上有着巨大差异,而下游的双性基因doublesex在结构和功能上高度保守。本文综述了昆虫性别决定调控机制中初始信号的作用机理,概括了下游信号通路的响应机制,介绍了性别决定下游保守基因doublesex,以期为深入理解昆虫性别决定机制和农业害虫防治提供新思路。  相似文献   

2.
性别决定是发育和进化生物学研究的一个重大问题。已知大多数昆虫的性别决定级联为:初级信号因子→性别决定关键基因→双性基因→性别分化基因。尽管遵循这样的模式,但不同昆虫的性别决定基因和调控机制各不相同,特别是性别决定初级信号因子存在较大分歧。自黑腹果蝇Drosophila melanogaster的初级信号被发现以来,人们陆续确定了蚊子、蜜蜂、丽蝇蛹集金小蜂Nasonia vitripennis、家蚕Bombyx mori等模式昆虫的初级信号。初级信号的种类复杂多样,包括性染色体的剂量、雄性化因子(male-determining factors, M factors)、等位基因的杂合度、母代印记等,这在一定程度上增加了非模式昆虫的研究难度。尽管如此,昆虫性别决定级联的下游调控机制仍相对保守,特别是transformer(tra)+transformer2(tra2)→doublesex(dsx)/fruitless(fru)的调控模式在大多数昆虫中存在共性。tra通过感知初级信号而发生选择性可变剪接,并在tra2的帮助下实现其对自身及下游dsx和fru的剪接调控,从而维持性别发育。dsx...  相似文献   

3.
植物性别决定基因研究进展   总被引:4,自引:0,他引:4  
本文概述了植物性别分化特异表达基因的分离方法以及近年来在性别分化研究的模式植物玉米和白麦瓶草上性决定基因研究的进展。  相似文献   

4.
刘雅婷  谢文  张友军 《昆虫学报》2015,58(4):437-444
阐述昆虫的性别决定机制是理解昆虫性别分化调控的理论基础,也为人类有效控制害虫开辟了新方向。昆虫性别决定机制存在复杂性和多样性,但主要是内因即性别决定基因级联互作调控的结果。本文对近年来基于性别决定基因级联互作的昆虫性别决定机制研究进行了综述,主要包括性别决定基因概况和重要性别决定相关基因的分子级联互作关系。目前发现昆虫重要性别决定相关基因主要集中在常染色体上,且部分基因之间存在紧密的级联互作,如Sxl,tra,dsx,csd和fem等。在这些基因中,tra/fem→dsx的调控模式在已报道的昆虫中存在共性,即tra和dsx相对较保守且tra通过性特异剪切来调控下游dsx的转录形式。目前大多数昆虫的性别决定机制还不清楚,但近年来模式昆虫性别决定机制取得了一定进展,对非模式昆虫的研究还处于起步阶段但却越来越受到重视。  相似文献   

5.
三种模式植物性别决定的研究进展(综述)   总被引:1,自引:0,他引:1  
综述白麦瓶草、玉米和黄瓜等模式植物性别决定的研究进展,并展望今后研究方向。  相似文献   

6.
昆虫NF-kB信号通路由toll和imd两条通路组成,通过转录因子NF-kB作用于靶标基因kB位点,而调节抗菌活性物质的表达。大量实验表明它能够被细菌、真菌和病毒的侵染所激活,在昆虫体液免疫中发挥着主要作用。现就昆虫的NF-kB信号通路的主要信号元件等进行综述。  相似文献   

7.
雌雄异株植物是植物性别决定机制及演化的重要研究材料,通过分子生物学技术分离性别决定的相关基因是揭示雌雄异株植物性别决定的关键问题之一。近10年来已经分离到了多个性染色体连锁的基因DD44X/Y、SLX/Y3、SLX/Y4、MROS3、SLZPT2-1、SLZPT4-1。尽管这些基因都存在于性染色体上,但是对其功能分析发现这些基因并不是性别决定的关键基因,而是性别决定控制系统中的成员之一。另外MADS-box基因也和性别特征器官的建成有关。本文对这些基因的结构及在性别决定中的功能研究进行综述和分析,并对可能的新的研究方向进行评价。  相似文献   

8.
植物性别决定的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
陈书燕  安黎哲 《西北植物学报》2004,24(10):1959-1965
通过回顾近年来以多种植物为材料进行的性染色体观察,性别决定基因及调控方式的研究,对植物性别决定的机制进行了初步探讨,从而可以看出不同植物具有不同的性别决定机制:对于有性染色体的植物而言,目前已经从Y染色体上分离和鉴定了许多与雄性发育紧密相关的基因;部分性别决定基因和调控序列已利用构建减法文库,诱导突变体等方法从一些植物中获得。此外,还有研究表明,DNA脱甲基化,以及某些激素(如赤霉素、乙烯、Ace)都对植物的性别决定有重要作用。  相似文献   

9.
杜连彩 《生物学通报》2004,39(12):28-28
植物性别决定的方式是多种多样的,有性染色体、基因平衡和性决定基因等几种类型。  相似文献   

10.
昆虫分子生物学的一些进展—性别决定,生殖及激素   总被引:4,自引:0,他引:4  
翟启慧 《昆虫学报》1993,36(1):113-125
  相似文献   

11.
Animals have evolved a bewildering diversity of mechanisms to determine the two sexes. Studies of sex determination genes--their history and function--in non-model insects and Drosophila have allowed us to begin to understand the generation of sex determination diversity. One common theme from these studies is that evolved mechanisms produce activities in either males or females to control a shared gene switch that regulates sexual development. Only a few small-scale changes in existing and duplicated genes are sufficient to generate large differences in sex determination systems. This review summarises recent findings in insects, surveys evidence of how and why sex determination mechanisms can change rapidly and suggests fruitful areas of future research.  相似文献   

12.
The consequences of cytoplasmic sex‐ratio distortion and host repression for the evolution of host sex‐determining mechanisms are examined. Analytical models and simulations are developed to investigate whether the interplay between sex‐ratio distorters and host masculinizers or resistance genes can cause heterogamety switching (changes between male and female heterogamety). Switches from female heterogamety to a system analogous to male heterogamety can occur when selection favours the spread of autosomal masculinizers. However, the evolutionary outcome depends on the type of repressor and costs associated with repression, and also on aspects of population structure. Under most conditions, systems evolved to a polymorphic sex‐determining state although many systems were characterized by numerical dominance of male heterogamety.  相似文献   

13.
Sex in many organisms is a dichotomous phenotype--individuals are either male or female. The molecular pathways underlying sex determination are governed by the genetic contribution of parents to the zygote, the environment in which the zygote develops or interaction of the two, depending on the species. Systems in which multiple interacting influences or a continuously varying influence (such as temperature) determines a dichotomous outcome have at least one threshold. We show that when sex is viewed as a threshold trait, evolution in that threshold can permit novel transitions between genotypic and temperature-dependent sex determination (TSD) and remarkably, between male (XX/XY) and female (ZZ/ZW) heterogamety. Transitions are possible without substantive genotypic innovation of novel sex-determining mutations or transpositions, so that the master sex gene and sex chromosome pair can be retained in ZW-XY transitions. We also show that evolution in the threshold can explain all observed patterns in vertebrate TSD, when coupled with evolution in embryonic survivorship limits.  相似文献   

14.
At present, most turtles, all crocodilians, and several lizards are known to have temperature-dependent sex determination (TSD). Due to the dependence of sex determination on incubation temperature, the long-term survival of TSD species may be jeopardized by global climate changes. The current study was designed to assess the degree to which this concern is justified by examining nest-site selection in two species of Pattern II TSD geckos (Eublepharis macularius and Hemitheconyx caudicinctus) and comparing these preferences with those of a species with genotypic sex determination (GSD) (Coleonyx mitratus). Temperature preferences for nest sites were found to be both species-specific and female-specific. While H. caudicinctus females selected a mean nest-site temperature (32.4°) very close to the upper pivotal temperature (32°C) for the species, E. macularius females selected a mean nest-site temperature (28.7°C) well below this species' lower pivotal temperature (30.5°C). Thus, the resultant sex ratios are expected to differ between these two TSD species. Additionally, nest-site temperatures for the GSD species were significantly more variable (SE=+0.37) than were temperatures for either of the TSD species (E. macularius SE=±0.10; H. caudicinctus SE =+ 0.17), diereby further demonstrating temperature preferences within the TSD species.  相似文献   

15.
16.
Parental sex ratio control was investigated in Gammarus duebeni, an amphipod with an environmentally mediated sex determining system. The effect on the F2 generation sex ratio of the photoperiodic conditions experienced by a) the P generation during and after copulation, b) the F1 generation before and after sex determination, and c) the F2 generation themselves during the period of sex determination, was tested. The photoperiodic conditions the F2 generation experienced during the period of sex determination had a significant effect on their sex ratio (more males were produced under long-day than under short-day conditions), but the photoperiodic conditions experienced by the F1 generation males and females or the P generation on the F1 male's side had no effect on the F2 sex ratio. However, the photoperiodic conditions the P generation on the F1 female's side experienced significantly affected the F2 sex ratio. When these animals experienced long-day conditions the F2 generation became female biased and when they experienced short-day conditions, male biased. It is proposed that the mechanism of control operates through the F1 generation mothers whilst in an embryonic stage of development in the P generation mother's brood pouch. The photoperiodically mediated effects of the embryonic F1 generation mother and the F2 generation on sex determination are additive. A mechanism by which both F1 generation maternal and F2 generation sex ratio control could operate in the field is proposed.  相似文献   

17.
膜翅目昆虫单双倍体性别决定机制(雄性是单倍体、雌性是二倍体)在昆虫纲的进化中有非常重要的作用。通常膜翅目昆虫的性别由单一位点的等位基因决定,杂合体发育成雌性,半合体发育成雄性。在近亲繁殖的情况下,一定数目的雄性会出现纯合二倍体,由于遗传阻隔这种二倍体的雄性通常是不育的。csd基因的发现为膜翅目昆虫性别决定机制提供了分子生物学证据。文章探讨CSD的分子生物学基础,对膜翅目昆虫sl-CSD的分布进行综述并且探讨膜翅目昆虫降低二倍体雄性消耗的策略以及可能存在的进化机制,最后提出几点建议以便从遗传学、生态学以及进化生物学角度全面的了解sl-CSD。  相似文献   

18.
T Rhen  A Schroeder  J T Sakata  V Huang  D Crews 《Heredity》2011,106(4):649-660
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.  相似文献   

19.
Most flowering plant species are hermaphroditic, but a small number of species in most plant families are unisexual (i.e., an individ-ual will produce only male or female gametes). Because species with unisexual flowers have evolved repeatedly from hermaphroditic progenitors, the mechanisms controlling sex determination in flowering plants are extremely diverse. Sex is most strongly determined by genotype in all species but the mechanisms range from a single controlling locus to sex chromosomes bearing several linked locirequired for sex determination. Plant hormones also influence sex expression with variable effects from species to species. Here, we review the genetic control of sex determination from a number of plant species to illustrate the variety of extant mechanisms. We emphasize species that are now used as models to investigate the molecular biology of sex determination. We also present our own investigations of the structure of plant sex chromosomes of white campion (Silene latifolia - Melan-drium album). The cytogenetic basis of sex determination in white campion is similar to mammals in that it has a male-specific Y-chromosome that carries dominant male determining genes. If one copy of this chromosome is in the genome, the plant is male. Otherwise it is female. Like mammalian Y-chromosomes, the white campion Y-chromosome is rich in repetitive DNA. We isolated repetitive sequences from microdissected Y-chromosomes of white campion to study the distribution of homologous repeated sequences on the Y-chromosome and the other chromosomes. We found the Y to be especially rich in repetitive sequences that were generally dispersed over all the white campion chromosomes. Despite its repetitive character, the Y-chromosome is mainly euchromatic. This may be due to the relatively recent evolution of the white campion sex chromosomes compared to the sex chromosomes of animals. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号