首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Floral colour change in Pedicularis monbeigiana (Orobanchaceae)   总被引:1,自引:0,他引:1  
We examined the effects of the retention of colour-changed flowers on long- and short-distance attractiveness of bumblebees and the likelihood of successive flower visits by bumblebees in Pedicularis monbeigiana. The lower lip changed colour with age from white to purple. Hand geitonogamous pollination significantly reduced seed production. No pollen limitation occurred in this species. Purple-phase flowers contributed minimally to pollinator attractiveness at long distance. The combination of less reproductive flowers with a lower amount of reward and floral colour change enabled plants to direct pollinators to reproductive, highly rewarding white flowers at close range. A high percentage of purple-phase flowers in an inflorescence was associated with a marked reduction in the frequency of successive flower visits to individual plants. We suggest floral colour change in P. monbeigiana may serve as a mechanism for enhancing inter-individual pollen transfer and reducing intra-individual pollen transfer.  相似文献   

2.
  • Long‐lived flowers increase pollen transfer rates, but these entail high water and carbon maintenance costs. The retention of pollinated and reward‐free old flowers enhances pollinator visitation to young receptive flowers by increasing floral display size. This mechanism is associated with acropetal inflorescences or changes in flower colour and openness, but the retention of unchanging solitary flowers remains overlooked.
  • We examined pollination‐dependent variation in floral longevity and determined stigmatic receptivity, pollen viability and pollen removal rates among flower ages in Kielmeyera regalis, a Neotropical savanna shrub. We also evaluated the effects of floral display size on pollinator visitation rates. Lastly, we determined whether old flowers are unvisited and exclusively increase pollinator attraction to young flowers through flower removal experiments.
  • Regardless of pollination treatment, flowers lasted fully open with no detectable physical changes for 3 days. Over time, stigmas remained receptive but >95% of pollen was removed. Pollinator visitation significantly increased with floral display size and intermediate percentages (15–30%) of newly opened flowers. Accordingly, the retention of reward‐free and unvisited old flowers increased young flower–pollinator interaction.
  • Our results reveal the importance of a prolonged floral longevity in increasing pollinator attraction toward newly opened receptive flowers without changes in flower colour and form. We conclude that the retention of pollinated, reward‐free and unvisited colour‐unchanged old flowers in K. regalis is a strategy that counteracts the water use costs associated with the maintenance of large flowers with increased mate opportunities in a pollen‐limited scenario.
  相似文献   

3.
When a pollination vector is required, any mechanism that contributes to floral visitation will potentially benefit the reproductive fitness of a plant. We studied the effect of floral colour change in the desert perennial Alkanna orientalis on the foraging behaviour of the solitary bee Anthophora pauperata . Flowers changed colour over time from bright yellow (with moderate nectar reward) to pale yellow/white (with significantly lower nectar reward). Bee visitation was non-random with respect to colour phase availability within the flower population and was biased towards the more rewarding flowers. At plants where the availability of colour phases had been manipulated experimentally to produce 'bright' or 'pale' plants, bees visited significantly more flowers (and for longer periods) on the bright plants. The change of flower colour was not simply age-related; we observed variation in the temporal course of colour change and our data suggest that visitation, leading to deposition of cross-pollen, can accelerate the process. In subpopulations with limited pollinators, Alkanna can influence bees by using their colour-related foraging preferences to alter visitation patterns.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 427–435.  相似文献   

4.
Abstract

Fuchsia excorticata is a gynodioecious tree (endemic to New Zealand) which is pollinated by honeyeater birds. Red, tubular flowers are common among bird-pollinated plants, and the tubular flowers of F. excorticata change colour from green to red. The purpose of the present study was to describe the timing of the colour change, dropping of the floral tube, and nectar production of F. excorticata and to determine how bellbirds (Anthornis melanura) and two introduced species of nectar robbers (Zosterops lateralis and Bombus sp.) respond to the different colour phases.

Floral tubes fell off about 11 days after anthesis in both sexes, with colour change occurring on about Day-4 for female trees and on about Day-5 for hermaphrodite trees. Green-phase hermaphrodite flowers produced significantly more nectar/day than did green-phase female flowers, while red-phase flowers did not produce nectar in either sex. All three floral visitors studied preferentially visited green-phase flowers and virtually ignored the nectarless flowers in the red phase. These results contrast with the general association between red, bird-pollinated flowers and the presence of a nectar reward. We suggest that the non-migratory habit of the New Zealand honeyeaters and the lack of native insect visitors to this species may account for this anomalous green-to-red colour change.  相似文献   

5.
Flower colour is a major advertisement signal of zoophilous plants for pollinators. Bees, the main pollinators, exhibit innate colour preferences, which have often been attributed to only one single floral colour, though most flowers display a pattern of two or several colours. The existing studies of floral colour patterns are mostly qualitative studies. Using a model of bee colour vision we quantitatively investigate two questions: whether or not component colours of floral colour patterns may mimic pollen signals, and whether or not bumblebees exhibit innate preferences for distinct parameters of naturally existing floral colour patterns. We analysed the spectral reflectances of 162 plant species with multicoloured flowers and inflorescences, distiniguishing between inner and outer colours of floral colour patterns irrespective of the particular structures so coloured.We found that:– The inner colour of radially symmetrical flowers and inflorescences and of zygomorphic flowers appears less diverse to bees than the peripheral colour.– The inner colour of most radial flowers and inflorescences as well as the inner colour of a large number of non-related zygomorphic flowers appears to bees to be very similar to that of pollen.– Bumblebees (Bombus terrestris) exhibit innate preferences for two-coloured over single-coloured dummy flowers in a spontaneous choice test.– Bumblebees exhibit innate preferences for dummy flowers with a large over those with a small centre area.– Bumblebees exhibit innate preferences for dummy flowers with a centre colour similar to that of pollen over those with another centre colour.Our findings support the hypotheses that the inner component of floral colour patterns could be interpreted as a generalised and little recognised form of mimicry of the colour of visually displayed pollen, that bumblebees exhibit innate preferences regarding colour and size parameters of floral colour patterns, and that these correspond to visually displayed pollen. These findings together suggest a prominent role of floral colour patterns in advertisement to and guidance of naive flower visitors.  相似文献   

6.
Idiospermum australiense (Diels) S.T. Blake, a rainforest canopy tree restricted to a few small populations in northeast Australia, is the only southern hemisphere representative of the Calycanthaceae. Pollination processes in Idiospermum were investigated. Flowers are protogynous, with some populations of the species being andromonoecious, whilst others are hermaphrodite. Over their 10 – 16 day floral lifespan, movements of floral organs enforced spatial and temporal separation of male and female floral function. Changes in colour and intensity of fragrance may also influence their attractiveness to potential pollinators. Pollen is present in large quantities, and appears to act as a reward for floral visitors. Insect trapping was carried out both within flowers, and immediately adjacent to inflorescences. A wide variety of arthropods was trapped, with thrips being the most abundant. Other arthropods were trapped, including fourteen species of beetle. For arthropods other than thrips, the mean numbers of adults trapped on flowers remained more or less constant throughout the floral lifetime. However, there was a significant interaction between floral age and the number of pre-adult arthropods present – as the flower aged, the mean number of larvae and eggs per flower increased. The flowers appear to act as sheltered mating and brooding sites for small insects.  相似文献   

7.
We studied biotically pollinated angiosperms on Macquarie Island, a remote site in the Southern Ocean with a predominately or exclusively dipteran pollinator fauna, in an effort to understand how flower colour affects community assembly. We compared a distinctive group of cream‐green Macquarie Island flowers to the flora of likely source pools of immigrants and to a continental flora from a high latitude in the northern hemisphere. We used both dipteran and hymenopteran colour models and phylogenetically informed analyses to explore the chromatic component of community assembly. The species with cream‐green flowers are very restricted in colour space models of both fly vision and bee vision and represent a distinct group that plays a very minor role in other communities. It is unlikely that such a community could form through random immigration from continental source pools. Our findings suggest that fly pollination has imposed a strong ecological filter on Macquarie Island, favouring floral colours that are rare in continental floras. This is one of the strongest demonstrations that plant–pollinator interactions play an important role in plant community assembly. Future work exploring colour choices by dipteran flower visitors would be valuable.  相似文献   

8.
The ecology and evolution of visual pollen signals   总被引:9,自引:0,他引:9  
By offering pollen and/or nectar as a food resource, angiosperms exploit flower visitors for pollen transport. Pollen thus acts not only as a means for transportation of male gametes, but also as a food reward for potential pollinators. Many findings provide compelling evidence that pollen acts, in addition, as a visual signal. The present contribution reviews several strategies that angiosperms have evolved to attract potential pollinators to the site of reward. We here consider evolutionary, ecological, sensory-physiological, and behavioural aspects of flower-pollinator interactions that are correlated with visual signals provided by pollen and pollen-producing organs, or imitations thereof.  相似文献   

9.
Although the tremendous variability in floral colour among angiosperms is often attributed to divergent selection by pollinators, it is usually difficult to preclude the possibility that floral colour shifts were driven by non-pollinator processes. Here, we examine the adaptive significance of flower colour in Disa ferruginea, a non-rewarding orchid that is thought to attract its butterfly pollinator by mimicking the flowers of sympatric nectar-producing species. Disa ferruginea has red flowers in the western part of its range and orange flowers in the eastern part--a colour shift that we hypothesized to be the outcome of selection for resemblance to different local nectar-producing plants. Using reciprocal translocations of red and orange phenotypes as well as arrays of artificial flowers, we found that the butterfly Aeropetes tulbaghia, the only pollinator of the orchid, preferred both the red phenotype and red artificial flowers in the west where its main nectar plant also has red flowers, and both the orange phenotype and orange artificial flowers in the east, where its main nectar plant has orange flowers. This phenotype by environment interaction demonstrates that the flower colour shift in D. ferruginea is adaptive and driven by local colour preference in its pollinator.  相似文献   

10.
  • Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from ‘pollination syndromes’ can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush‐like inflorescences that exhibit features of both bird and rodent pollination syndromes.
  • We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self‐compatibility and breeding system, and studied pollen dispersal using fluorescent dyes.
  • The dark‐red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male‐ over female‐phase inflorescences, likely because of the male flowers’ higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded.
  • Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent‐pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non‐flying mammals.
  相似文献   

11.
Background and AimsColour pattern is a key cue of bee attraction selectively driving the appeal of pollinators. It comprises the main colour of the flower with extra fine patterns, indicating a reward focal point such as nectar, nectaries, pollen, stamens and floral guides. Such advertising of floral traits guides visitation by the insects, ensuring precision in pollen gathering and deposition. The study, focused in the Southwest Australian Floristic Region, aimed to spot bee colour patterns that are usual and unusual, missing, accomplished by mimicry of pollen and anthers, and overlapping between mimic-model species in floral mimicry cases.MethodsFloral colour patterns were examined by false colour photography in 55 flower species of multiple highly diverse natural plant communities in south-west Australia. False colour photography is a method to transform a UV photograph and a colour photograph into a false colour photograph based on the trichromatic vision of bees. This method is particularly effective for rapid screening of large numbers of flowers for the presence of fine-scale bee-sensitive structures and surface roughness that are not detectable using standard spectrophotometry.Key ResultsBee- and bird-pollinated flowers showed the expected but also some remarkable and unusual previously undetected floral colour pattern syndromes. Typical colour patterns include cases of pollen and flower mimicry and UV-absorbing targets. Among the atypical floral colour patterns are unusual white and UV-reflecting flowers of bee-pollinated plants, bicoloured floral guides, consistently occurring in Fabaceae spp., and flowers displaying a selective attractiveness to birds only. In the orchid genera (Diuris and Thelymitra) that employ floral mimicry of model species, we revealed a surprising mimicry phenomenon of anthers mimicked in turn by model species.ConclusionThe study demonstrates the applicability of ‘bee view’ colour imaging for deciphering pollinator cues in a biodiverse flora with potential to be applied to other eco regions. The technique provides an exciting opportunity for indexing floral traits on a biome scale to establish pollination drivers of ecological and evolutionary relevance.  相似文献   

12.
In melittophilous plants the colour pattern of the flowers, as perceived by bumblebees, is a gradient of centripetally increasing spectral purity. This pattern serves as a signal for innate flower recognition in naive bumblebees permitting orientation to flowers and landing on flowers. Structures which make up the total signal pattern can include the background (e.g., green leaves), corollas, and stamens or floral guides. How various colour parameters, such as dominant wavelength, intensity, and spectral purity influence the colour signal pattern of flowers is analyzed. The process of strong absorption of ultraviolet light is shown to be a mechanism for the enhancement of spectral purity in flower guides. The importance of other mechanisms is also demonstrated. The presence of a gradient of centripetally increasing spectral purity in floral colour patterns as perceived by a bumblebee's eyes is demonstrated by a comparison of the spectral reflectance in different parts of the flower and a representation of colour loci in the colour triangle.  相似文献   

13.
Polymorphism in petal colour is common in deceptively pollinated plant species. Most of the deceptively pollinated orchids are food frauds, and in most of them, the deception is not mimetic. These plants have conspicuously coloured flowers which they use as the main attractant of naive pollinators. In a field experiment, we studied the response of bumblebees and other types of flower visitors to colour differences between experimentally paired plants of Dactylorhiza maculata , a nectarless food-deceptive species. In addition, pollen removal, an estimate of male fitness, and fruit production, an estimate of female fitness, were measured in the two colour variants. We found a trend of bumblebee preference for the dark-coloured flowers, but other flower visitors (as a group) showed no preference for any colour variant. No difference was found in the reproductive success between the two colour variants of D. maculata. The lack of a difference in reproductive success between plants with pale and dark inflorescences, despite the observed trend of bumblebee preference for dark inflorescences, suggests that there is some balancing factor in the pollination of the pale inflorescences. An excess of visits by some nocturnal species (or a group of species) which favours the pale colour of D. maculata inflorescences or an excess of visits during day time by some flower visitors other than bumblebees preferring the pale inflorescences over dark ones may form such a balancing factor.  相似文献   

14.
Flower visitors learn to avoid food-deceptive plants and to prefer rewarding ones by associating floral cues to rewards. As co-occurring plant species have different phenologies, cue-reward associations vary over time. It is not known how these variations affect flower visitors’ foraging costs and learning. We trained bumblebees of two colonies to forage in a community of deceptive and rewarding artificial inflorescences whose flower colours were either similar or dissimilar. We then modified the community composition by turning the rewarding inflorescences into unrewarding and adding rewarding inflorescences of a novel flower colour. In the short term, bees trained to similar rather than dissimilar inflorescences experienced higher costs of foraging (decreased foraging speed and accuracy) in the novel community. The colonies differed in their speed-accuracy trade-off. In the longer term, bees adapted their foraging behaviour to the novel community composition by increasingly visiting the novel rewarding inflorescences.  相似文献   

15.
Freshly emerged flower visitors exhibit colour preferences prior to individual experience with flowers. The understanding of innate colour preferences in flower visitors requires a detailed analysis, as, on the one hand, colour is a multiple-signal stimulus, and, on the other hand, flower visits include a sequence of behavioural reactions each of which can be driven by a preferential behaviour. Behavioural reactions, such as the distant approach, the close-range orientation, the landing, and the extension of mouthparts can be triggered by colour stimuli. The physiological limitations of spectral sensitivity, the neuro-sensory filters, and the animals' different abilities to make use of visual information such as brightness perception, wavelength-specific behaviour and colour vision shape colour preferences. Besides these receiverbased factors, there are restrictions of flower colouration due to sender-based factors such as the absorption properties of floral pigments and the dual function of flower colours triggering both innate and learned behaviour. Recordings of the spectral reflection of coloured objects, which trigger innate colour preferences, provide an objective measure of the colour stimuli. Weighting the spectral reflection of coloured objects by the spectral composition of the ambient light and the spectral sensitivity of the flower visitors' photoreceptors allows the calculation of the effective stimuli. Perceptual dimensions are known for only a few taxa of flower visitors.  相似文献   

16.
Studies of the floral biology of the buriti palm, Mauritia flexuosa, have presented conflicting results with respect to the mechanism of pollination, indicating either cantharophily or anemophily. To resolve this question, the floral biology of M. flexuosa was studied in a coastal restinga environment in northeastern Brazil. The reproductive system was studied experimentally, and floral visitors were collected by bagging inflorescences. In this environment, M. flexuosa, a dioecious species, has several gender-specific floral features that function to attract pollinators, especially beetles. The male flowers produce large amounts of pollen as a reward, and male and female inflorescences produce similar odors that attract pollinators to female flowers, which offer only a nectar secretion as a reward. When feeding on the female flowers, the visitors frequently come into contact with the stigmata. To increase the chances of pollination, the female flowers persist longer than the male ones, and the viability of the pollen grain is very high. A curculionid beetle species of the genus Grasidius was found to be an effective pollinator. We suspect that wind also contributes to the pollination of M. flexuosa in the study area, but in a relatively minor way.  相似文献   

17.
Flower colour changes from white or yellow to various shades of red at or near the sites of harvestable pollen in Calytrix glutinosa, Grevillea pilulifera, Isopogon dubius and Petrophile biloba , and over most of the flower in Hypocalymma angustifolium, Verticordia chrysantha and V. huegelii and over the pseudanthium in Darwinia citriodora. All bee, wasp, beetle, fly, butterfly and moth visitors select flowers in the white/yellow phase rather than the red or intermediate phase.
Nectar is produced by five species, harvestable pollen by four species and detectable perfume by three species, all of which features are usually absent from the red phase. The timing of the colour change in all species also corresponds to loss of stigma receptivity, completion of pollination and onset of ovule seed) swelling. Six species also undergo minor morphometric changes which discourage visitation. In all species, colour change is non-inducible by pollinators, taking 2–30 days to complete. In three protandrous species, all available pollen may be removed in the first visit, requiring transport of non-self pollen to rewardless flowers during the 10 h period of the yellow phase.
These species are highly floriferous and occur in dense patches. Since only a small proportion of flowers may be receptive at any one time, it is concluded that retention of flower parts essentially serves to enhance long-distance attraction, while colour change maximizes pollination and foraging efficiency.  相似文献   

18.
We studied the effect of floral color change on long- and short-distance attraction of insect pollinators to the herb lungwort, Pulmonaria collina. Lungwort flowers change color with age from red to blue. Young red flowers had a significantly greater pollen and nectar reward and were significantly more often unpollinated than old blue ones. Red and blue flowers both influenced long-distance attractiveness of plants, defined as the number of insect approaches towards an individual plant. After reaching a plant, flower visitors preferred to visit young red flowers. Therefore, short-distance attractiveness, defined as the number of flowers visited successively on an individual plant, was influenced mainly by the number of young red flowers. The co-occurrence of the change in reproductive ability, in amount of reward, and in flower color enabled lungwort plants to direct pollinators to reproductive, highly rewarding red flowers. The data suggest that by maintaining changed flowers lungwort plants can increase their long-distance attraction and simultaneously enhance the probability of flower visits to pre-changed flowers. Thus, we propose floral color change as a mechanism that can increase the efficiency of pollen transfer to enhance plant fitness. Received: 2 November 1998 / Accepted: 14 July 1999  相似文献   

19.
'Floral' scent production by Puccinia rust fungi that mimic flowers   总被引:1,自引:0,他引:1  
Crucifers (Brassicaceae) in 11 genera are often infected by rust fungi in the Puccinia monoica complex. Infection causes a 'pseudoflower' to form that is important for attracting insect visitors that sexually outcross the fungus. 'Pollinator' attraction is accomplished through visual floral mimicry, the presence of a nectar reward and floral fragrances. Here we used gas chromatography and mass spectrometry to identify and quantify fragrance production by these rust fungi on several Arabis hosts, and by co-occurring true flowers that share insect visitors. Fungal pseudoflowers produced distinctive floral fragrances composed primarily of aromatic alcohols, aldehydes and esters. Pseudoflower fragrances were chemically similar to noctuid-moth-pollinated flowers, such as Cestrum nocturnum and Abelia grandiflora , but were very different from host flowers, host vegetation and the flowers of coblooming, nonhost angiosperms. There was variation in the quantity and composition of fragrance profiles from different fungal species as well as within and among hosts. The evolution of scent chemistry is relatively conservative in these fungi and can be most parsimoniously explained in three steps by combining chemical data with a previously determined rDNA ITS sequence-based phylogeny. Pseudoflower scent does not appear to represent a simple modification of host floral or vegetative emissions, nor does it mimic the scent of coblooming flowers. Instead, we suspect that the unique fragrances, beyond their function as pollinator attractants, may be important in reducing gamete loss by reinforcing constancy among foraging insects.  相似文献   

20.
According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号