首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Miller 《Biologicals》1999,27(2):79-86
The evidence from pre-licensure studies does not suggest that there are clinically important differences in reactogenicity between acellular vaccines. The merits of different acellular products will therefore have to be compared on efficacy criteria. Ideally, acellular vaccines with the minimum antigen content necessary to ensure optimum protection should be used in order to avoid administration of superfluous antigens to children and to simplify licensing and batch release procedures.On the basis of the evidence so far available it seems unlikely that monocomponent pertussis toxin (PT) vaccines provide optimal protection and that multicomponent vaccines are needed to achieve a level of disease control that approaches that of a good whole-cell vaccine. It is unclear whether all two component vaccines containing PT and filamentous haemagglutinin (FHA) have similar efficacy but on the available evidence the safest option for policy makers would seem to be to use a vaccine with at least three components, PT+FHA+pertactin. There is now good evidence that the five component vaccine which contains agglutinogens 2 and 3 in addition to PT/FHA and pertactin provides the best protection and is the only acellular vaccine whose efficacy matches that of a good whole cell vaccine. However, the public health advantage of the five component vaccine over other acellular vaccines may not become apparent until they have been in routine use for some decades and their ability to protect against transmission as well as clinical pertussis has emerged.The decision to replace an effective whole-cell vaccine by an acellular vaccine for primary immunisation needs careful consideration. Apart from the probable sacrifice of efficacy for reduced reactogenicity (at least for vaccines which do not contain agglutinogens 2 and 3) there is the question of value for money and the ease with which acellular DTP vaccines can be combined with conjugate polysaccharide vaccines such as Haemophilus influenzae type b.Whatever the decision of policy makers, the need for continued follow up of trial cohorts and active surveillance of the efficacy and safety of those acellular vaccines that are introduced into routine use must be accorded a high priority.  相似文献   

2.
An ideal acellular pertussis vaccine is now under investigation worldwide. We have had acellular pertussis vaccines available for the last 22 years, which contributed greatly to the control of pertussis in Japan, although it has not been known whether they are one of ideal acellular pertussis vaccines or not. Moreover, the formulations of acellular pertussis vaccines that we have been using have not been widely recognized. Serum samples were taken from recipients of the T type, B type, and two-component acellular pertussis vaccine and assayed by ELISA for anti-PT, anti-FHA, and anti-69 kD OMP antibody levels and by the agglutination test. Although it was shown that T type vaccine contained four components (PT, FHA, 69 kD OMP, agglutingen), B type vaccine contained three components (PT, FHA, 69 kD OMP) and the two-component vaccine contained PT and FHA, it was concluded that PT and FHA were essential and common antigens contained in all three acellular pertussis vaccines in Japan. The national monitoring system for adverse effects of routine immunization demonstrated low reactogenicity of DTaP in Japan. This resulted in high acceptance rates of DTaP and in virtual control of pertussis.  相似文献   

3.
Vaccines comprising combinations of diphtheria, tetanus and pertussis (DTP) with Haemophilus influenzae type b polysaccharide-protein conjugate (Hib), inactivated poliomyelitis virus (IPV) and hepatitis B virus (HBV) are already available, and new combinations using acellular pertussis components in a triple vaccine (DTaP) are under development. Evidence to date has shown that control of the efficacy, safety and stability of combination vaccines cannot be based on information already available on the individual components or existing licensed formulations. Several examples of immunological interference between components of a combination vaccine have been observed both in clinical trials and in laboratory tests. Examples of these for D, T and Hib components in DTP and DTaP combinations have been investigated.  相似文献   

4.
G A Calver 《Biologicals》1999,27(2):143-147
Vaccines containing acellular pertussis components, either separate or combined with other microbial antigens, were evaluated for specific immune responses in guinea-pigs and mice. The capacity of sera to protect chick embryos from the lethal effect of pertussis toxin was independent of the Chinese hamster ovary cell clumping neutralization titre and the antigen binding ELISA anti-toxin titre. Direct correlations did not exist between ELISA titres to Pt, FHA, fimbria or 69 kDa and capacity to prevent killing of embryos by different strains of Bordetella pertussis. With the exception of one combination vaccine product, addition of foreign microbial antigens to acellular pertussis vaccines did not significantly alter capacity of the sera to protect embryos against toxin or bacteria.  相似文献   

5.
Bordetella pertussis causes whooping cough, a severe and prolonged respiratory disease that results inhas high morbidity and mortality rates, particularly in developing countries. The number incidence of whooping cough cases is increasing in many countries despite high vaccine coverage. Causes for the re‐emergence of the disease include the limited duration of protection conferred by the acellular pertussis vaccines (aP)s and pathogenic adaptations that involve antigenic divergence from vaccine strains. Therefore, current vaccines therefore need to be improved. In the present study, we focused on five autotransporters: namely SphB1, BatB, SphB2, Phg, and Vag8, which were previously found to be expressed by B. bronchiseptica during the course of infection in rats and examined their protective efficiencies as vaccine antigens. The passenger domains of these proteins were produced in recombinant forms and used as antigens. An intranasal murine challenge assay showed that immunization with a mixture of SphB1 and Vag8 (SV) significantly reduced bacterial load in the lower respiratory tract and a combination of aP and SV acts synergistically in effects of conferring protection against B. pertussis infection, implying that these antigens have potential as components to for improvinge th the currently available acellular pertussis vaccine.
  相似文献   

6.
Recent clinical trials have shown that the new generation of acellular pertussis vaccines (Pa) can confer protection against whooping cough with negligible adverse reactions. We have compared the effects of pertussis whole cell and acellular vaccines on pulmonary immune responses after aerosol challenge in a murine model of infection. Mice were vaccinated with PBS, Pw or Pa and challenged with Bordetella pertussis by the aerosol route. Cytokine gene expression was analysed from lung tissue and cells; lung lymphocytes were re-stimulated in vitro and cytokines produced measured. The results obtained are consistent with the proposal that a strong Th-1 response is associated with bacterial clearance in both the non-vaccinated and Pw vaccinated mice. The acellular vaccine treated mice cleared the bacterial challenge (with an intermediate efficacy) in the presence of low levels of any of the cytokines assessed. This suggests that Pa protects via a Th-2 independent mechanism.  相似文献   

7.
New acellular pertussis and combination vaccines vary in the concentration and presence or absence of specific components and in extent of adsorption to adjuvants. There is a pressing need to develop new control methods for acellular pertussis vaccines. Negative staining electron microscopy has been evaluated as a method for assessing the purity of individual vaccine components and the amount of adsorption to aluminium gels. Negative staining showed the characteristic morphology of vaccine components and permitted detection of contaminants and morphological changes. Reproducible results were obtained by use of a standardized negative staining technique and confidence in the technique was increased by comparison of previously unexamined specimens with a specimen that had been characterized by repeated observations. The degree of adsorption to aluminium adjuvants could only be assessed by observation of the amount of non-adsorbed material in the specimen. Negative staining electron microscopy can be used as one of a number of techniques for control of acellular pertussis combination vaccines.  相似文献   

8.
The results of the weight gain test on mice have shown that acellular pertussis vaccine is less toxic than the pertussis component of adsorbed diphtheria-pertussis-tetanus (DPT) vaccine due to a lower content of endotoxin in the acellular vaccine; but the leukocytosis-promoting and histamine-sensitizing activities of JNIH-6 and adsorbed DPT vaccines are indicative of incomplete inactivation of Bordetella pertussis toxin. The content of incompletely inactivated B. pertussis toxin is practically the same in both preparations, constituting 1/100-1/200 of the calculated initial activity. For this reason, the use of the new pertussis vaccine also involves a risk of development of serious postvaccinal reactions and/or complications caused by this toxin. Search for the optimum method of inactivation of B. pertussis main toxin should be continued. As shown by the enzyme immunoassay, acellular pertussis vaccine used in the same immunizing dose as adsorbed DPT vaccine induces a more intensive immune response to hemagglutinin and B. pertussis toxin. This is due to higher residual toxicity of the corpuscular component of adsorbed DPT vaccine. Induction of antibodies to B. pertussis toxin has been shown to decrease in response to injection of acellular pertussis vaccine containing a certain residual amount of incompletely inactivated B. pertussis toxin.  相似文献   

9.
Studies concerned evaluation of differences between parameters of cell-mediated immunity in mice, induced with whole-cell and acellular pertussis vaccines with subsequent challenge with B. pertussis strains harbouring different ptxS1/prn allele genes. In the study, concentrations of IFN-gamma/Il-2 and 1l-4/Il-5 in supernatants of cultured mice splenocytes have been determined to evaluate differences in Th1 or Th2 lymphocytes subpopulation response. Simultaneously, studies of intracellular expression of genes encoding of Il-2, Il-12, IFN-gamma and Il-4, Il-5, Il-10, Il-13 in mice splenocytes, and genes encoding factors involved in inflammatory process in the lung tissue (GM-CSF, TNF-alpha, Il-1beta, Il-6 i TGF-beta) have been performed on RNA level. The obtained results, confirmed high polarization of immunological response toward Th1 in mice immunized with DTP vaccine with whole-cell pertussis component, and toward Th2 in mice immunized with acellular pertussis vaccine. Inflammatory process in the lung tissue was more pronounced in animals immunized with whole-cell pertussis vaccine. There were no quantitative differences of analysed factors involved in the immune response among mice challenged B. pertussis strains containing different ptxS1/prn composition.  相似文献   

10.
In Poland, similar to many highly immunized Western countries, a recent increase in cases of pertussis has been observed. This study aims to evaluate the level of potency fluctuations of the pertussis component of Polish-produced DTP vaccine due to the changes having occurred in production and potency testing procedures. We compared the potency of the pertussis component of DTP vaccine lots produced and evaluated in similar periods and with similar production and testing procedures. Records of Kendrick test results performed over a 30-year period were available for analysis. This study confirms the role of different manufacturers, changes in vaccine strain compositions, in-house reference preparations used as reference vaccines in the Kendrick tests, and in mice of single strain sources in the potency values obtained. In addition, the comparisons performed revealed a downtrend in potency levels since 1992. Potency decrease in vaccine lots produced during 1992-1997 has been positively correlated to the lowering of the number of IOU/dose. Strain compositions of the DTP vaccine pertussis component and in-house references have been found to be associated with the fluctuation in potency estimations, and confirmed their crucial role in ensuring vaccine efficacy. Our study reveals that relative efficacy of the DTP vaccine produced in 1992-1997 might be lower than that of vaccines produced in other periods. This might in turn explain the increase in pertussis cases among children aged 5-15 years which is presently being observed in Poland.  相似文献   

11.
Development of acellular pertussis vaccines.   总被引:8,自引:0,他引:8  
Y Sato  H Sato 《Biologicals》1999,27(2):61-69
In 1974, the authors reported the isolation and characterization of protective antigens of Bordetella pertussis in mice. With this information, an acellular pertussis vaccine was developed, composed mainly of pertussis toxin (PT) and filamentous haemagglutinin (FHA). Substances causing side effects, especially lipopoly sacahoride (LPS) or endotoxin that cause fever, were removed, and detoxification of the PT by formaldehyde with retention of potency was achieved. In 1981, an acellular pertussis vaccine called the "Adsorbed Purified Pertussis Vaccine" was approved in Japan, in place of the whole-cell pertussis vaccine. The acellular pertussis vaccine has been widely accepted as safer and more efficacious in Japan. Since 1981, intense surveillance has shown that there are only rare adverse reactions and that pertussis has virtually been eliminated in Japan. Evaluation of active immunization with highly purified and pharmacologically inert PT and FHA and passive immunization with polyclonal and monoclonal antibodies, provide quantitative data about the vaccine-induced immunity in mice. Finally, it was discovered that the PT toxoid in the vaccine is the major and essential protective antigen. The toxoid of PT should be sufficient for protection against pertussis.  相似文献   

12.
Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.  相似文献   

13.
Modern data substantiating the expediency of the use of acellular pertussis vaccine were analyzed. Serious postvaccinal complications caused by the action of the corpuscular pertussis component of adsorbed DPT vaccine served as the basis for the development of acellular pertussis vaccine (APV). During the period of 1990-1996 as many as 8 international field trials of the effectiveness of APV were carried out. The results of these trials and studies were evaluated in accordance with the unified programs and criteria. The vaccines under test differed by the composition of Bordetella pertussis purified antigens they contained, the methods of their purification and the detoxification of pertussis toxin. All tested APV, with the exception SKB-2, possessed pronounced prophylactic activity.  相似文献   

14.
Acellular pertussis vaccines: evaluation of reversion in a nude mouse model   总被引:4,自引:0,他引:4  
An animal model has been developed to assess the safety of acellular pertussis vaccines in terms of reversion to toxicity. Adsorbed pertussis toxoid preparations, alone or combined in a DTP formulation, were administered to nude mice intraperitoneally. In parallel, groups of positive and negative control mice received pertussis toxin and buffer, respectively. The circulating white blood cells of the animals were monitored for 28 days. Mice immunized with glutaraldehyde toxoid preparations did not develop a lymphocytosis during the observation period, whereas mice immunized with an experimental formalin pertussis toxoid vaccine exhibited a high lymphocytosis six days after vaccine administration, demonstrating, in this model, a reversion of the toxoid. The nude mouse model thus appears to reveal the in-vivo reversion of pertussis toxoids and could be included in the quality control panel for the assessment of the safety of acellular pertussis vaccine.  相似文献   

15.
I Heron  F M Chen  J Fusco 《Biologicals》1999,27(2):91-96
NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inactivated with H(2)O(2). PT was analysed using advanced biochemical methodology including mass spectroscopy (LC/MS), yielding mass and peptide mapping information on the subunits. Pertactin, adenylate cyclase, and Fim 1, 2 were below detection levels and only trace amounts of filamentous haemagglutinin (FHA) have been identified as a minor impurity. The vaccine does not induce anti-FHA antibodies during the course of a 3-dose primary immunization series in infants. B and T cell epitopes are preserved to a higher extent after H(2)O(2)detoxification when compared with chemical inactivation with formaldehyde, thus providing new information explaining why vaccines employing formaldehyde detoxified PT may need additional pertussis components added to induce high levels of protection. Anti-PT antibodies generated by NAVA diphtheria, tetanus, and acellular pertussis vaccine (DTaP) showed a positive correlation with protection against WHO-defined pertussis. The safety profiles for these vaccines showed low reactogenicity with no serious adverse events due to the vaccines.  相似文献   

16.
Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.  相似文献   

17.
Standardization of acellular pertussis vaccines.   总被引:1,自引:0,他引:1  
In comparison with the current whole cell pertussis vaccine, the new generation of acellular pertussis vaccines opens new opportunities to improve the standardization of the product, because well defined and characterized components are used in these new products.However, different compositions, purification and inactivation methods are used by different manufacturers. Consequently the various acellular pertussis vaccines in the world are difficult to compare in a meaningful manner using simple laboratory tests. In addition, the absence of a reliable animal model and serological correlates with protection in children are other complicating factors.For that reason it seems that the consistency in manufacturing based on a clinically validated production process is the best way to ensure the safety and efficacy of routinely produced acellular pertussis vaccines.Laboratory tests to monitor the antigen content, purity, safety and immunogenicity seem to be the best approach to standardize this new generation of pertussis vaccines against homologous standard vaccines with known clinical efficacy and safety and to support the consistency in manufacture.  相似文献   

18.
The reactogenicity and epidemiological effectiveness of the second revaccination against pertussis were studied in conformity with all the conditions of a controlled epidemiological trial. The character of the distribution of local and fever reactions in children aged 6 years after the second revaccination with adsorbed DTP vaccine suggests the presence of high sensitivity to the pertussis component of absorbed DTP vaccine in children of this age group. The results obtained from the study of epidemiological effectiveness (in 15,621 children) indicated that the second revaccination of children aged 6 years (at an interval of 3 or more years after the first revaccination) was not advisable as it did not influence noticeably the pertussis incidence.  相似文献   

19.
Strains of B. pertussis isolated from patients in Moscow in 2001-2005 as well as strains included in locally produced diphtheria-tetanus-whole cell pertussis (DTP) vaccine were studied. Nucleotide sequences in genes of pertactin and S1-subunit of pertussis toxin of isolated strains, their immunobiological properties and opportunity to use for producing of the acellular pertussis vaccine were determined. Genes of pertactin and S1-subunit of pertussis toxin in the isolated wild strains differed from the same genes in strains included in the local DTP vaccine. Majority of the isolated strains belonged to serotype 1.0.3 and were markedly virulent.  相似文献   

20.
The majority of currently available successful vaccines induce host responses against antigens that are highly conserved in the targeted pathogens. The diphtheria, tetanus, and pertussis vaccines confer protection by inducing neutralizing antibodies to the conserved bacterial toxins that are the major virulence factors. The Hemophilus influenzae B vaccine induces responses to conserved epitopes in the sugar structure of the bacterial capsular polysaccharide. However, the efficacy of more recently developed vaccines is limited by antigen variation, which also presents a challenge for future vaccine development. This review will explore bacterial genome variability and its impact on vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号