首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
North temperate fish in post‐glacial lakes are textbook examples for rapid parallel adaptive radiation into multiple trophic specialists within individual lakes. Speciation repeatedly proceeded along the benthic–limnetic habitat axis, and benthic–limnetic sister species diverge in the number of gill rakers. Yet, the utility of different numbers of gill rakers for consuming benthic vs. limnetic food has only very rarely been experimentally demonstrated. We bred and raised families of a benthic–limnetic species pair of whitefish under common garden conditions to test whether these species (i) show heritable differentiation in feeding efficiency on zooplankton, and (ii) whether variation in feeding efficiency is predicted by variation in gill raker numbers. We used zooplankton of three different size classes to investigate prey size dependency of divergence in feeding efficiency and to investigate the effect strength of variation in the number of gill rakers. Our results show strong interspecific differences in feeding efficiency. These differences are largest when fish were tested with the smallest zooplankton. Importantly, feeding efficiency is significantly positively correlated with the number of gill rakers when using small zooplankton, also when species identity is statistically controlled for. Our results support the hypothesis that a larger number of gill rakers are of adaptive significance for feeding on zooplankton and provide one of the first experimental demonstrations of trait utility of gill raker number when fish feed on zooplankton. These results are consistent with the suggested importance of divergent selection driven feeding adaptation during adaptive radiation of fish in post‐glacial lakes.  相似文献   

2.
The relationship between the gill raker structure of planktivorous fish (number, distance between gill rakers and length) and selective feeding on different species and size classes of zooplankton was studied. Gill raker structure was measured for brown trout Salmo trutta , Arctic charr Salvelinus alpinus , whitefish Coregonus lavaretus , roach Rutilus rutilus , bleak Alburnus alburnus , and three-spined stickleback Gasterosteus aculeatus . All species are facultative planktivorous fish and occur commonly in Scandinavian lakes. The effect of gill raker structure was studied by comparing prey found in fish stomachs with the availability of zooplankton from several lakes. Gill raker length and distance were significantly correlated with fish length. Although gill raker structure differed among species, all fish species selected the larger zooplankters. The minimum size of cladoceran species found in fish stomachs was much smaller than the distance between gill rakers. Despite great differences in gill raker spacing, the minimum size ingested of Daphnia galeata and Bosmina longispina was similar for all predators. The hypothesis that small zooplankton are strained and retained by the gill rakers in particulate feeding planktivorous fish, particularly in salmonids and roach, is rejected.  相似文献   

3.
Considerable variation in morphology associated with resource use is a classic example of local adaptation to the environment. We demonstrate that a temporal change in feeding morphology might occur within a population. In a 5-year natural field experiment, we estimated gill raker morphology, resource density and population dynamics of the roach and its competitor, the perch. Despite a variation in density of zooplankton resources and perch across years, no change in roach density was observed. However, gill raker morphology in roach covaried with size structure of the zooplankton resource across years. A laboratory experiment confirmed that gill raker morphology has a great effect on roach foraging efficiency on zooplankton and that there is a functional trade-off with regard to zooplankton foraging. We suggest that the response in gill raker structure is an adaptation to deal with the rapid population dynamics of zooplankton, which are in turn mediated by changes in the size structure of the competing perch.  相似文献   

4.
Natural populations often vary in their degree of ecological, morphological and genetic divergence. This variation can be arranged along an ecological speciation continuum of increasingly discrete variation, with high inter-individual variation at one end and well defined species in the other. In postglacial fishes, evolutionary divergence has commonly resulted in the co-occurrence of a pelagic and a benthic specialist. We studied three replicate lakes supporting sympatric pelagic and benthic European whitefish (Coregonus lavaretus (L.)) morphs in search for early signs of possible further divergence into more specialized niches. Using stomach content data (recent diet) and stable isotope analyses (time-integrated measure of trophic niche use), we observed a split in the trophic niche within the benthic whitefish morph, with individuals specializing on either littoral or profundal resources. This divergence in resource use was accompanied by small but significant differences in an adaptive morphological trait (gill raker number) and significant genetic differences between fish exploiting littoral and profundal habitats and foraging resources. The same pattern of parallel divergence was found in all three lakes, suggesting similar natural selection pressures driving and/or maintaining the divergence. The two levels of divergence (a clear and robust benthic – pelagic and a more subtle littoral – profundal divergence) observed in this study apparently represent different stages in the process of ecological speciation.  相似文献   

5.
Evolutionary diversification within consumer species may generate selection on local ecological communities, affecting prey community structure. However, the extent to which this niche construction can propagate across food webs and shape trait variation in competing species is unknown. Here, we tested whether niche construction by different life-history variants of the planktivorous fish alewife (Alosa pseudoharengus) can drive phenotypic divergence and resource use in the competing species bluegill (Lepomis macrochirus). Using a combination of common garden experiments and a comparative field study, we found that bluegill from landlocked alewife lakes grew relatively better when fed small than large zooplankton, had gill rakers better adapted for feeding on small-bodied prey and selected smaller zooplankton compared with bluegill from lakes with anadromous or no alewife. Observed shifts in bluegill foraging traits in lakes with landlocked alewife parallel those in alewife, suggesting interspecific competition leading to parallel phenotypic changes rather than to divergence (which is commonly predicted). Our findings suggest that species may be locally adapted to prey communities structured by different life-history variants of a competing dominant species.  相似文献   

6.
A full factorial crossing experiment with five females and five males of each of two coregonid species from upper Lake Constance was used to test for intrinsic post‐zygotic incompatibilities during early ontogeny. Up until shortly before hatching, there was no difference in embryo mortality between homo and heterologous crosses. A maternal effect on mortality was found in both species, but paternal effects and female–male interactions were absent. Thus, genetic incompatibility during early ontogeny does not appear to prevent introgressive hybridization, suggesting that genetic divergence between these species is maintained primarily by pre‐zygotic barriers. The recent genetic homogenizations of coregonid species flocks in European alpine lakes may have been caused by a flattening of adaptive landscapes through eutrophication, but intensive stocking with larvae obtained in hatcheries from artificially fertilized eggs is also likely to be a contributing factor. To safeguard diversity among sympatric coregonids, it is important to re‐establish ecological conditions conducive to species divergence and to revise traditional management strategies.  相似文献   

7.
Understanding how a monophyletic lineage of a species diverges into several adaptive forms has received increased attention in recent years, but the underlying mechanisms in this process are still under debate. Postglacial fishes are excellent model organisms for exploring this process, especially the initial stages of ecological speciation, as postglacial lakes represent replicated discrete environments with variation in available niches. Here, we combine data of niche utilization, trophic morphology, and 17 microsatellite loci to investigate the diversification process of three sympatric European whitefish morphs from three northern Fennoscandian lakes. The morphological divergence in the gill raker number among the whitefish morphs was related to the utilization of different trophic niches and was associated with reproductive isolation within and across lakes. The intralacustrine comparison of whitefish morphs showed that these systems represent two levels of adaptive divergence: (1) a consistent littoral–pelagic resource axis; and (2) a more variable littoral–profundal resource axis. The results also indicate that the profundal whitefish morph has diverged repeatedly from the ancestral littoral whitefish morph in sympatry in two different watercourses. In contrast, all the analyses performed revealed clustering of the pelagic whitefish morphs across lakes suggesting parallel postglacial immigration with the littoral whitefish morph into each lake. Finally, the analyses strongly suggested that the trophic adaptive trait, number of gill rakers, was under diversifying selection in the different whitefish morphs. Together, the results support a complex evolutionary scenario where ecological speciation acts, but where both allopatric (colonization history) and sympatric (within watercourse divergence) processes are involved.  相似文献   

8.
Adaptive radiation is the evolution of ecological and phenotypical diversity. It arises via ecological opportunity that promotes the exploration of underutilized or novel niches mediating specialization and reproductive isolation. The assumed precondition for rapid local adaptation is diversifying natural selection, but random genetic drift could also be a major driver of this process. We used 27 populations of European whitefish (Coregonus lavaretus) from nine lakes distributed in three neighboring subarctic watercourses in northern Fennoscandia as a model to test the importance of random drift versus diversifying natural selection for parallel evolution of adaptive phenotypic traits. We contrasted variation for two key adaptive phenotypic traits correlated with resource utilization of polymorphic fish; the number of gill rakers and the total length of fish, with the posterior distribution of neutral genetic differentiation from 13 microsatellite loci, to test whether the observed phenotypic divergence could be achieved by random genetic drift alone. Our results show that both traits have been under diversifying selection and that the evolution of these morphs has been driven by isolation through habitat adaptations. We conclude that diversifying selection acting on gill raker number and body size has played a significant role in the ongoing adaptive radiation of European whitefish morphs in this region.  相似文献   

9.
Eco‐evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.  相似文献   

10.
Ecologically, morphologically and genetically distinct populations within single taxa often coexist in postglacial lakes and have provided important model systems with which to investigate ecological and evolutionary processes such as niche partitioning and ecological speciation. Within the Salmonidae, these species complexes have been well studied, particularly within the Coregonus clupeaformisC. laveratus (lake and European whitefish, respectively) group, but the phenomenon has been less well documented in the other whitefish genera, Prosopium and Stenodus. Here, we examined the morphology, feeding biology and genetic structure of three putative forms of the pygmy whitefish, Prosopium coulterii (Eigenmann & Eigenmann, 1892), first reported from Chignik Lake, south‐western Alaska, over 40 years ago. Field collections and morphological analyses resolved a shallow water (< 5 m depth) low gill raker count form (< 15 first arch gill rakers), a deepwater (> 30 m), low gill raker form and a deepwater, high gill raker count (> 15 gill rakers) form. The two low gill raker count forms fed almost exclusively on benthic invertebrates (mostly chironomids), while the deepwater, high gill raker count form fed almost exclusively on zooplankton; differences in diet were also reflected in differences both in δ13C and δ15N stable isotopes. All three forms were characterized by the same major mitochondrial DNA clade that has been associated with persistence in, and postglacial dispersal from, a Beringian glacial refugium. Analysis of variation at nine microsatellite DNA loci indicated low, but significant differentiation among forms, especially between the two low gill raker count forms and the high gill raker count form. The extent of differentiation along phenotypic (considerable) and genetic (subtle) axes among the Chignik Lake forms is similar to that found among distinct taxa of Prosopium found in pre‐glacial Bear Lake (Utah–Idaho, USA) which is probably at least ten times older than Chignik Lake. Our analyses illustrate the potential for the postglacial differentiation in traits subject to divergent natural selection across variable environments.  相似文献   

11.
Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer–algae chemostats; alewife–zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife–zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.  相似文献   

12.
Patterns of diel food selection in pelagic Arctic charr, Salvelinus alpinus (L.) and brown trout, Salmo trutta L. were investigated in Lake Atnsjo, SE Norway, by gillnet sampling during July-September 1985. Arctic charr feed almost exclusively on zooplankton both day and night, while brown trout had a diurnal shift in diet. For this species zooplankton made up a considerable part of the diet in the daytime, while at night the diet consisted mainly of surface insect and chironomid pupae. Both species had a selective feeding mode on zooplankton during the day and night. Arctic charr had a higher gill raker number and a denser gill raker spacing compared with brown trout. Still, the differences in prey size between the two species were small. We argue that the observed differences in food selection between Arctic charr and brown trout can be explained by differing abilities to detect food items under low light conditions.  相似文献   

13.
How does natural selection shape the structure of variance and covariance among multiple traits, and how do (co)variances influence trajectories of adaptive diversification? We investigate these pivotal but open questions by comparing phenotypic (co)variances among multiple morphological traits across 18 derived lake‐dwelling populations of threespine stickleback, and their marine ancestor. Divergence in (co)variance structure among populations is striking and primarily attributable to shifts in the variance of a single key foraging trait (gill raker length). We then relate this divergence to an ecological selection proxy, to population divergence in trait means, and to the magnitude of sexual dimorphism within populations. This allows us to infer that evolution in (co)variances is linked to variation among habitats in the strength of resource‐mediated disruptive selection. We further find that adaptive diversification in trait means among populations has primarily involved shifts in gill raker length. The direction of evolutionary trajectories is unrelated to the major axes of ancestral trait (co)variance. Our study demonstrates that natural selection drives both means and (co)variances deterministically in stickleback, and strongly challenges the view that the (co)variance structure biases the direction of adaptive diversification predictably even over moderate time spans.  相似文献   

14.
Adaptation to ecologically distinct environments can coincide with the emergence of reproductive barriers. The outcome of this process is highly variable and can range along a continuum from weak population differentiation all the way to complete, genome-wide divergence. The factors determining how far diverging taxa will move along this continuum remain poorly understood but are most profitably investigated in taxa under replicate divergence. Here, we explore determinants of progress towards speciation by comparing phenotypic and molecular divergence within young (<150 years) lake-stream stickleback pairs from Central Europe to divergence in older (thousands of years) archetypal lake-stream pairs from Vancouver Island, Canada. We generally find relatively weak divergence in most aspects of foraging morphology (gill raker number, body shape) in the European pairs, although substantial adaptive divergence is seen in gill raker length. Combined with striking overall phenotypic differences between the continents, this argues for genetic and time constraints on adaptive divergence in the European pairs. The European lake-stream pairs also do not display the strong habitat-related differentiation in neutral (microsatellite) markers seen in the Canadian watersheds. This indicates either the lack of strong reproductive barriers owing to weak adaptive divergence, or alternatively that neutral markers are poorly suited for detecting reproductive barriers if these emerge rapidly. Overall, our comparative approach suggests constraints on speciation due to genetic architecture and limited time for divergence. The relative importance of these factors remains to be quantified by future investigation.  相似文献   

15.
Gill raker morphology of a benthophagous fish Goniistius zonatus (Cheilodactylidae) (10.9–29.2 cm SL), using a filter-feeding mode, was compared between two locations (Morode and Arakashi) in southern Japan. Although gill raker number and gill raker length at the two locations did not differ, gill raker spacing was narrower relative to overall fish size at Morode than at Arakashi, mainly because gill raker width was greater at Morode. The difference of gill raker spacing is unlikely to have a genetic or physiochemical explanation. Small invertebrates (≤1.0 mm) were dominant on the substrate at Morode but were less common at Arakashi. Such small animals were consumed by many fish at Morode but were rarely exploited at Arakashi. At Morode, the narrow gill raker spacing would be effective in retaining small prey, which should be an important energy resource in this population. The difference of interraker spacing at the two locations seems to be related to available prey size at each location. Received: November 14, 2000 / Revised: February 13, 2001 / Accepted: February 28, 2001  相似文献   

16.
There are currently few predictions about when evolutionary processes are likely to play an important role in structuring community features. Determining predictors that indicate when evolution is expected to impact ecological processes in natural landscapes can help researchers identify eco-evolutionary ‘hotspots', where eco-evolutionary interactions are more likely to occur. Using data collected from a survey in freshwater cladoceran communities, landscape population genetic data and phenotypic trait data measured in a common garden, we applied a Bayesian linear model to assess whether the impact of local trait evolution in the keystone species Daphnia magna on cladoceran community trait values could be predicted by population genetic properties (within-population genetic diversity, genetic distance among populations), ecological properties (Simpson's diversity, phenotypic divergence) or environmental divergence. We found that the impact of local trait evolution varied among communities. Moreover, community diversity and phenotypic divergence were found to be better predictors of the contribution of evolution to community trait values than environmental features or genetic properties of the evolving species. Our results thus indicate the importance of ecological context for the impact of evolution on community features. Our study also demonstrates one way to detect signatures of eco-evolutionary interactions in communities inhabiting heterogeneous landscapes using survey data of contemporary ecological and evolutionary structure.  相似文献   

17.
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human‐induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer‐spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948–2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.  相似文献   

18.
Divergent natural selection acting in different habitats may build up barriers to gene flow and initiate speciation. This speciation continuum can range from weak or no divergence to strong genetic differentiation between populations. Here, we focus on the early phases of adaptive divergence in the East African cichlid fish Astatotilapia burtoni, which occurs in both Lake Tanganyika (LT) and inflowing rivers. We first assessed the population structure and morphological differences in A. burtoni from southern LT. We then focused on four lake–stream systems and quantified body shape, ecologically relevant traits (gill raker and lower pharyngeal jaw) as well as stomach contents. Our study revealed the presence of several divergent lake–stream populations that rest at different stages of the speciation continuum, but show the same morphological and ecological trajectories along the lake–stream gradient. Lake fish have higher bodies, a more superior mouth position, longer gill rakers and more slender pharyngeal jaws, and they show a plant/algae and zooplankton‐biased diet, whereas stream fish feed more on snails, insects and plant seeds. A test for reproductive isolation between closely related lake and stream populations did not detect population‐assortative mating. Analyses of F1 offspring reared under common garden conditions indicate that the detected differences in body shape and gill raker length do not constitute pure plastic responses to different environmental conditions, but also have a genetic basis. Taken together, the A. burtoni lake–stream system constitutes a new model to study the factors that enhance and constrain progress towards speciation in cichlid fishes.  相似文献   

19.
The food spectrum of multirakered whitefish Coregonus lavaretus pravdinellus was studied. It was shown that C. lavaretus pravdinellus feeds mainly on large zooplankton; however, it also consumes nauplii whose average sizes are considerably smaller than the intergill distance. This fact counts in favor of the view of the active functioning of gill rakers. The type of feeding of C. lavaretus is related to a set of morphological characters of the gill-jaw apparatus and the head, such as the number of gill rakers, the length of the upper and lower jaws, mouth position, and the shape and slope of the snout tip area. A great number of gill rakers allows coregonids to use as food a wider size range of prey.  相似文献   

20.
Trait combinations that lead to a higher efficiency in resource utilization are important drivers of divergent natural selection and adaptive radiation. However, variation in environmental features might constrain foraging in complex ways and therefore impede the exploitation of critical resources. We tested the effect of water transparency on intra-population divergence in morphology of Eurasian perch (Perca fluviatilis) across seven lakes in central Sweden. Morphological divergence between near-shore littoral and open-water pelagic perch substantially increased with increasing water transparency. Reliance on littoral resources increased strongly with increasing water transparency in littoral populations, whereas littoral reliance was not affected by water transparency in pelagic populations. Despite the similar reliance on pelagic resources in pelagic populations along the water transparency gradient, the utilization of particular pelagic prey items differed with variation in water transparency in pelagic populations. Pelagic perch utilized cladocerans in lakes with high water transparency and copepods in lakes with low water transparency. We suggest that under impaired visual conditions low utilization of littoral resources by littoral perch and utilization of evasive copepods by pelagic perch may lead to changes in morphology. Our findings indicate that visual conditions can affect population divergence in predator populations through their effects on resource utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号