共查询到20条相似文献,搜索用时 46 毫秒
1.
There is a general consensus that today’s deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients. 相似文献
2.
With the increasing appreciation for the crucial roles that microbial symbionts play in the development and fitness of plant and animal hosts, there has been a recent push to interpret evolution through the lens of the “hologenome”—the collective genomic content of a host and its microbiome. But how symbionts evolve and, particularly, whether they undergo natural selection to benefit hosts are complex issues that are associated with several misconceptions about evolutionary processes in host-associated microbial communities. Microorganisms can have intimate, ancient, and/or mutualistic associations with hosts without having undergone natural selection to benefit hosts. Likewise, observing host-specific microbial community composition or greater community similarity among more closely related hosts does not imply that symbionts have coevolved with hosts, let alone that they have evolved for the benefit of the host. Although selection at the level of the symbiotic community, or hologenome, occurs in some cases, it should not be accepted as the null hypothesis for explaining features of host–symbiont associations.The ubiquity and importance of microorganisms in the lives of plants and animals are ever more apparent, and increasingly investigated by biologists. Suddenly, we have the aspiration and tools to open up a new, complicated world, and we must confront the realization that almost everything about larger organisms has been shaped by their history of evolving from, then with, microorganisms [1]. This development represents a dramatic shift in perspective—arguably a revolution—in modern biology.Do we need to revamp basic tenets of evolutionary theory to understand how hosts evolve with associated microorganisms? Some scientists have suggested that we do [2], and the recently introduced terms “holobiont” and “hologenome” encapsulate what has been described as an “emerging postmodern synthesis” [3]. Holobiont was initially used to refer to a host and a single inherited symbiont [4] but was later extended to a host and its community of associated microorganisms, specifically for the case of corals [5]. The idea of the holobiont is that a host and its associated microorganisms must be considered as an integrated unit in order to understand many biological and ecological features.The later introduction of the term hologenome [2,6,7] sought to describe a holobiont by its genetic composition. The term has been used in different ways by different authors, but in most contexts a hologenome is considered a genetic unit that represents the combined genomes of a host and its associated microorganisms [8]. This non-controversial definition of hologenome is linked to the idea that this entity has a role in evolution. For example, Gordon et al. [1,9] state, "The genome of a holobiont, termed the hologenome, is the sum of the genomes of all constituents, all of which can evolve within that context." That last phrase is sufficiently general that it can be interpreted in any number of ways. Like physical conditions, associated organisms can be considered as part of the environment and thus can be sources of natural selection, affecting evolution in each lineage.But a more sweeping and problematic proposal is given by originators of the term, which is that "the holobiont with its hologenome should be considered as the unit of natural selection in evolution" [2,7] or by others, that “an organism’s genetics and fitness are inclusive of its microbiome” [3,4]. The implication is that differential success of holobionts influences evolution of participating organisms, such that their observed features cannot be fully understood without considering selection at the holobiont level. Another formulation of this concept is the proposal that the evolution of host–microbe systems is “most easily understood by equating a gene in the nuclear genome to a microbe in the microbiome” [8]. Under this view, interactions between host and microbial genotypes should be considered as genetic epistasis (interactions among alleles at different loci in a genome) rather than as interactions between the host’s genotype and its environment.While biologists would agree that microorganisms have important roles in host evolution, this statement is a far cry from the claim that they are fused with hosts to form the primary units of selection, or that hosts and microorganisms provide different portions of a unified genome. Broadly, the hologenome concept contends, first, that participating lineages within a holobiont affect each other’s evolution, and, second, that that the holobiont is a primary unit of selection. Our aim in this essay is to clarify what kinds of evidence are needed for each of these claims and to argue that neither should be assumed without evidence. We point out that some observations that superficially appear to support the concept of the hologenome have spawned confusion about real biological issues (Box 1).
Box 1. Misconceptions Related to the Hologenome Concept
Misconception #1: Similarities in microbiomes between related host species result from codiversification. Reality: Related species tend to be similar in most traits. Because microbiome composition is a trait that involves living organisms, it is tempting to assume that these similarities reflect a shared evolutionary history of host and symbionts. This has been shown to be the case for some symbioses (e.g., ancient maternally inherited endosymbionts in insects). But for many interactions (e.g., gut microbiota), related hosts may have similar effects on community assembly without any history of codiversification between the host and individual microbial species (Fig 1B).Open in a separate windowFig 1Alternative evolutionary processes can result in related host species harboring similar symbiont communities.Left panel: Individual symbiont lineages retain fidelity to evolving host lineages, through co-inheritance or other mechanisms, with some gain and loss of symbiont lineages over evolutionary time. Right panel: As host lineages evolve, they shift their selectivity of environmental microbes, which are not evolving in response and which may not even have been present during host diversification. In both cases, measures of community divergence will likely be smaller for more closely related hosts, but they reflect processes with very different implications for hologenome evolution. Image credit: Nancy Moran and Kim Hammond, University of Texas at Austin. Misconception #2: Parallel phylogenies of host and symbiont, or intimacy of host and symbiont associations, reflect coevolution. Reality: Coevolution is defined by a history of reciprocal selection between parties. While coevolution can generate parallel phylogenies or intimate associations, these can also result from many other mechanisms. Misconception #3: Highly intimate associations of host and symbionts, involving exchange of cellular metabolites and specific patterns of colonization, result from a history of selection favoring mutualistic traits. Reality: The adaptive basis of a specific trait is difficult to infer even when the trait involves a single lineage, and it is even more daunting when multiple lineages contribute. But complexity or intimacy of an interaction does not always imply a long history of coevolution nor does it imply that the nature of the interaction involves mutual benefit. Misconception #4: The essential roles that microbial species/communities play in host development are adaptations resulting from selection on the symbionts to contribute to holobiont function. Reality: Hosts may adapt to the reliable presence of symbionts in the same way that they adapt to abiotic components of the environment, and little or no selection on symbiont populations need be involved. Misconception #5: Because of the extreme importance of symbionts in essential functions of their hosts, the integrated holobiont represents the primary unit of selection. Reality: The strength of natural selection at different levels of biological organization is a central issue in evolutionary biology and the focus of much empirical and theoretical research. But insofar as there is a primary unit of selection common to diverse biological systems, it is unlikely to be at the level of the holobiont. In particular cases, evolutionary interests of host and symbionts can be sufficiently aligned such that the predominant effect of natural selection on genetic variation in each party is to increase the reproductive success of the holobiont. But in most host–symbiont relationships, contrasting modes of genetic transmission will decouple selection pressures. 相似文献3.
4.
Pyrenean Pastoralists’ Ecological Knowledge: Documentation and Application to Natural Resource Management and Adaptation 总被引:1,自引:0,他引:1
María E. Fernández-Giménez Federico Fillat Estaque 《Human ecology: an interdisciplinary journal》2012,40(2):287-300
Pastoral production systems in the Spanish Pyrenees have changed dramatically in recent decades, leading to the loss of traditional ecological knowledge (TEK). We documented TEK of pastoralists from two valleys in the western Central Pyrenees of Aragón and explored its potential applications to resource management and adaptation. Pyrenean pastoralists possess extensive knowledge of relationships between terrain, climate, vegetation and animal nutrition and behavior. TEK could contribute to sustainable stewardship and facilitate adaptation by informing pasture monitoring; providing traditional practices to manage mountain vegetation; and preserving knowledge of extensive livestock production strategies, such as transhumance. Institutional barriers to applying TEK include weak economic cooperation among stockmen, their dependence on EU subsidies, and lack of voice in regional government decisions about local resources. A more collaborative, place-based stewardship of the Central Pyrenees might begin with direct involvement of pastoralists in designing monitoring of pasture conditions and vegetation type changes. 相似文献
5.
6.
Lamberts SW 《Hormone research》2000,53(Z3):42-43
There is much evidence that some aspects of ageing are similar to those observed in selective hormone deficiencies during adulthood. Replacement therapy in hypogonadism and/or growth hormone (GH) deficiency in adulthood is very successful in reversing the related clinical symptomatology. However, preliminary studies of GH treatment in the normal elderly have been largely disappointing: an increase in muscle mass is only accompanied by improved muscle strength if exercise is also increased during this period. No real benefit of GH therapy, additional to that of exercise, has been reported. Epidemiological studies indicate a relationship between high-normal insulin-like growth factor-I levels and cancer development. No definitive answers can presently be given regarding the safety of long-term GH therapy in otherwise healthy individuals during the somatopause. 相似文献
7.
Mast cells (MC) are phylogenetically old cells which are distributed throughout the human organism and, on the whole, occupy roughly the volume of the spleen. MC have long been recognized as key cells of type I hypersensitivity reactions. Several lines of evidence, however, indicate that they not only express critical effector functions in classic IgE-associated allergic disorders, but also play important roles in host defence against parasites, bacteria and perhaps even viruses. Indeed, it is now clear that MC can contribute to host defence in the context of either acquired or innate immune responses through the release of a myriad of pro-inflammatory and immunoregulatory molecules and the expression of a wide spectrum of surface receptors for cytokines and chemokines. Moreover, there is growing evidence that MC exert distinct non-immunological functions, playing a relevant role in tissue homeostasis, remodeling and fibrosis as well as in the processes of tissue angiogenesis. In this review, we provide a small insight into the biology of human MC and their potential implications in clinical pathology. 相似文献
8.
9.
Local Management of Mangrove Forests in the Philippines: Successful Conservation or Efficient Resource Exploitation? 总被引:1,自引:1,他引:1
Bradley B. Walters 《Human ecology: an interdisciplinary journal》2004,32(2):177-195
Recent environmental narratives suggest that local people are effective stewards of forest resources. Local restoration and management of mangrove forests, in particular, are now widely advocated as a solution to achieve both economic and environmental conservation goals. This paper presents findings from a study of 2 coastal sites in the Philippines that are renowned and often showcased as success stories in community-based, mangrove reforestation and management. These cases are especially intriguing because local tree planting and management emerged in both areas long before governments and nongovernment organizations began to promote such activities. These management systems are a successful economic innovation in that planted mangroves protect homes and fish pond dykes from wave and wind damage, and the production of high-value construction wood is dramatically enhanced through intensive plantation management. Mangrove plantations are an efficient alternative to harvesting from unplanted, natural mangroves and their spread may reduce harvesting pressures on existing forests. However, mangrove plantations are structurally and compositionaly very different from unplanted forests, a finding of particular concern given that such plantations are increasingly encroaching into and replacing natural forests. Furthermore, planted forests are not typically viewed by planters in terms of their environmental conservation values and are frequently cut and cleared to make space for alternative uses, especially fish farming and residential settlement. The suggestion that these local mangrove management systems are successful for conservation thus needs to be qualified. 相似文献
10.
The bootstrap: To smooth or not to smooth? 总被引:4,自引:0,他引:4
11.
Hoffmann WA Geiger EL Gotsch SG Rossatto DR Silva LC Lau OL Haridasan M Franco AC 《Ecology letters》2012,15(7):759-768
Fire shapes the distribution of savanna and forest through complex interactions involving climate, resources and species traits. Based on data from central Brazil, we propose that these interactions are governed by two critical thresholds. The fire-resistance threshold is reached when individual trees have accumulated sufficient bark to avoid stem death, whereas the fire-suppression threshold is reached when an ecosystem has sufficient canopy cover to suppress fire by excluding grasses. Surpassing either threshold is dependent upon long fire-free intervals, which are rare in mesic savanna. On high-resource sites, the thresholds are reached quickly, increasing the probability that savanna switches to forest, whereas low-resource sites are likely to remain as savanna even if fire is infrequent. Species traits influence both thresholds; saplings of savanna trees accumulate bark thickness more quickly than forest trees, and are more likely to become fire resistant during fire-free intervals. Forest trees accumulate leaf area more rapidly than savanna trees, thereby accelerating the transition to forest. Thus, multiple factors interact with fire to determine the distribution of savanna and forest by influencing the time needed to reach these thresholds. Future work should decipher multiple environmental controls over the rates of tree growth and canopy closure in savanna. 相似文献
12.
人类活动和气候变化对植被内部组分的相互作用和反馈机制产生显著而持续的影响,导致植被生态系统状态发生变化。目前围绕植被生态系统多稳态及稳态转换已经形成一系列理论和实证层面的成果。以人类活动和气候变化为特定干扰域,对植被生态系统稳态转换的理论基础演变进行综述,并从机理层面解析植被结构-功能-状态响应过程;系统梳理植被稳态转换的阈值效应,识别出可能指示生态阈值的驱动力-响应关系;最后,从临界域视角整合植被生态系统稳态转换的信号特征,包括临界慢化、空间关系异常和斑块规律性构型等。在对目前研究不足和未来研究重点进行归纳分析的基础上,主张基于阈值的植被生态系统管理路径,但需要建立在认知植被临界响应机制和非线性自组织规律的前提之上。 相似文献
13.
Isabelle M. C?té Emily S. Darling Christopher J. Brown 《Proceedings. Biological sciences / The Royal Society》2016,283(1824)
Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions—notably synergies—a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism''s physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world. 相似文献
14.
Ecological systems can show complex and sometimes abrupt responses to environmental change, with important implications for their resilience. Theories of alternate stable states have been used to predict regime shifts of ecosystems as equilibrium responses to sufficiently slow environmental change. The actual rate of environmental change is a key factor affecting the response, yet we are still lacking a non-equilibrium theory that explicitly considers the influence of this rate of environmental change. We present a metacommunity model of predator–prey interactions displaying multiple stable states, and we impose an explicit rate of environmental change in habitat quality (carrying capacity) and connectivity (dispersal rate). We study how regime shifts depend on the rate of environmental change and compare the outcome with a stability analysis in the corresponding constant environment. Our results reveal that in a changing environment, the community can track states that are unstable in the constant environment. This tracking can lead to regime shifts, including local extinctions, that are not predicted by alternative stable state theory. In our metacommunity, tracking unstable states also controls the maintenance of spatial heterogeneity and spatial synchrony. Tracking unstable states can also lead to regime shifts that may be reversible or irreversible. Our study extends current regime shift theories to integrate rate-dependent responses to environmental change. It reveals the key role of unstable states for predicting transient dynamics and long-term resilience of ecological systems to climate change. 相似文献
15.
Ecological Resilience, Biodiversity, and Scale 总被引:30,自引:7,他引:30
We describe existing models of the relationship between species diversity and ecological function, and propose a conceptual
model that relates species richness, ecological resilience, and scale. We suggest that species interact with scale-dependent
sets of ecological structures and processes that determine functional opportunities. We propose that ecological resilience
is generated by diverse, but overlapping, function within a scale and by apparently redundant species that operate at different
scales, thereby reinforcing function across scales. The distribution of functional diversity within and across scales enables
regeneration and renewal to occur following ecological disruption over a wide range of scales.
Received 11 April 1997; accepted 9 July 1997. 相似文献
16.
Vasilis Dakos Stephen R. Carpenter Egbert H. van Nes Marten Scheffer 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1659)
In the vicinity of tipping points—or more precisely bifurcation points—ecosystems recover slowly from small perturbations. Such slowness may be interpreted as a sign of low resilience in the sense that the ecosystem could easily be tipped through a critical transition into a contrasting state. Indicators of this phenomenon of ‘critical slowing down (CSD)’ include a rise in temporal correlation and variance. Such indicators of CSD can provide an early warning signal of a nearby tipping point. Or, they may offer a possibility to rank reefs, lakes or other ecosystems according to their resilience. The fact that CSD may happen across a wide range of complex ecosystems close to tipping points implies a powerful generality. However, indicators of CSD are not manifested in all cases where regime shifts occur. This is because not all regime shifts are associated with tipping points. Here, we review the exploding literature about this issue to provide guidance on what to expect and what not to expect when it comes to the CSD-based early warning signals for critical transitions. 相似文献
17.
Effects of fish and nutrient additions on food-web stability in a charophyte-dominated lake 总被引:2,自引:0,他引:2
1. The response of major food‐web constituents to combinations of nutrient addition and zooplanktivorous fish abundance was tested during two subsequent years in the shallow charophyte‐dominated lake Naardermeer in the Netherlands, using in situ enclosures. 2. Treatment effects differed sharply between study years. In 1998, when the summer temperature was low (17–21 °C), high algal biomass only developed at high nutrient levels in the presence of fish, but with no major effect on Chara biomass. In 1999, when the summer temperature was relatively high (20–25 °C), algal blooms occurred at high nutrient levels regardless of fish abundance, and were associated with a drastic decline in Chara biomass. 3. Differences between years in temperature and initial zooplankton composition and biomass were likely to contribute to the varying relative importance of top‐down and bottom‐up effects in these enclosure experiments. 4. The results suggest that when nutrient loads are increased towards levels where the macrophyte‐dominated state is being destabilised, a ‘switch’ is more likely to occur in warm summers. 相似文献
18.
Guim Aguadé-Gorgorió;Jean-François Arnoldi;Matthieu Barbier;Sonia Kéfi; 《Ecology letters》2024,27(4):e14413
Natural systems are built from multiple interconnected units, making their dynamics, functioning and fragility notoriously hard to predict. A fragility scenario of particular relevance concerns so-called regime shifts: abrupt transitions from healthy to degraded ecosystem states. An explanation for these shifts is that they arise as transitions between alternative stable states, a process that is well-understood in few-species models. However, how multistability upscales with system complexity remains a debated question. Here, we identify that four different multistability regimes generically emerge in models of species-rich communities and other archetypical complex biological systems assuming random interactions. Across the studied models, each regime consistently emerges under a specific interaction scheme and leaves a distinct set of fingerprints in terms of the number of observed states, their species richness and their response to perturbations. Our results help clarify the conditions and types of multistability that can be expected to occur in complex ecological communities. 相似文献
19.
《植物生态学报》2013,37(11):1059
当一个存在多稳态的生态系统临近突变阈值点时, 外界条件即使发生一个微小变化, 也会引发生态系统的剧烈响应, 使之进入结构和功能截然不同的另一稳定状态, 这种现象称为重大突变(critical transition)。重大突变所导致的稳态转换总是伴随着生态系统服务的急剧变化, 可能对人类可持续发展产生重大影响。预测生态系统突变的发生非常困难, 但科学家在此领域的大量研究结果表明, 通过监测一些通用指标可以判断生态系统是否不断临近重大突变阈值点, 进而可以进行生态系统重大突变预警。该文对近年来生态系统重大突变检测领域所取得的成果进行总结与归纳, 论述了生态系统重大突变的产生机制及其后果, 介绍了生态系统突变预警信号提取的理论基础, 从时间和空间两个维度总结了近年来生态系统重大突变预警信号的提取方法, 概述了当前研究面临的挑战, 指出生态系统突变预警信号的检测应充分利用时空动态数据, 并且联合多个指标, 从多个角度进行综合预警, 此外, 还应重视生态系统结构与重大突变之间的关系, 增强生态系统突变预警能力。 相似文献
20.
Fire is a common disturbance in many ecosystems, including arid Australia. Understanding whether fauna respond in a deterministic manner towards a single end‐point, or to multiple states, is of crucial importance for conservation management. Why different taxa or assemblages display single or multiple end‐points is also important to develop a synthetic theory of succession. To examine the post‐fire changes in assemblages of spiders, we established a chronosequence study in spinifex habitat of central Western Australia. Ground‐active spiders were pitfall‐trapped over nine months in sites representing experimental fires (0 and 0.5 years post‐fire) and wildfires (3, 5, 8 and 20 years post‐fire). There were significant non‐linear changes in species richness, evenness and composition of spiders with increasing post‐fire age. For all three measures, the assemblage appeared highly deterministic, converging towards the long unburnt state. Similarity in richness, evenness and species composition to the 20‐year‐old sites all increased with increasing time since fire (3–8 years). However, experimentally burnt sites did not neatly fit this sequence. We consider two alternative hypotheses to explain this second trajectory: inertia within the system or the rapid migration and recolonization from nearby surrounding unburnt areas. Analyses indicated that half of the 179 species had significant preferences for, or were restricted to, particular post‐fire ages. This suggests that adequate pyrodiversity, both in terms of post‐fire ages and/or scale and intensity of fires, may be important for the conservation of spiders in this habitat. However, owing to the high number of singletons and low indicator values, the significance of this result for conservation management remains equivocal. Despite this, the high degree of determinism provides hope that managers can develop a good predictive understanding of post‐fire successional changes in spider assemblages in arid Australia. 相似文献