首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Interleukin-6 expression during normal maturation of the mouse testis   总被引:2,自引:0,他引:2  
In this study, we examined the cellular origin and the expression levels of interleukin-6 (IL-6) during normal maturation of mouse testis. The levels of IL-6 (protein and mRNA) were higher in testicular homogenates of sexually immature than mature mice. Immunohistochemical staining of testicular tissues of sexually immature and adult mice show that testicular germ cells, at different stages of differentiation, Leydig cells/interstitial cells and peritubular cells express IL-6. Our results demonstrate, for the first time, overexpression of IL-6 in testicular tissues of immature mice, as compared to mature mice, as well as the expression of IL-6 in germ cells of testicular tissues of adult and sexually immature mice. Thus, our results may indicate the involvement of the endocrine system (gonadotropins and testosterone) in the regulation of IL-6, which is involved in the regulation of testicular development, functions and spermatogenesis.  相似文献   

2.
In the present study, we examined the cellular origin and the expression levels of interleukin-18 binding protein (IL-18 BP), during normal maturation of murine testis. Immunohistochemical staining of testicular tissues from sexually mature mice, shows that testicular germ cells, at different stages of differentiation, express IL-18 BP. Leydig cells/interstitial cells and peritubular cells express higher levels of IL-18 BP, as compared to other testicular cells. The levels of IL-18 BP were similar in testicular tissues and homogenates from sexually immature and mature mice, as examined by western blot, ELISA and real time PCR analysis. Our results demonstrate, for the first time, the expression of IL-18 BP in murine testicular tissues and cells. Together with our previous studies, which showed over-expression of IL-18 in testicular tissues of immature mice as compared with mature mice, these results may indicate a role for IL-18 in testicular development, and also in the regulation of testicular functions under physiological conditions.  相似文献   

3.
In this study we examined the cellular origin and the expression levels of interleukin-18 (IL-18), IL-18 receptor (IL-18R) and IL-1beta-converting enzyme (ICE), which activates pro-IL-18, during normal maturation of murine testis. The levels of IL-18, IL-18R and ICE were significantly higher in testicular tissues and homogenates (but not in the spleen or liver) from sexually immature than mature mice. Immunohistochemical staining of testicular tissues from sexually immature and mature mice shows that testicular germ cells and Leydig cells/interstitial cells express higher levels of IL-18, as compared to other testicular cells. Peritubular cells of sexually immature and mature mice also expressed IL-18. Our results demonstrate, for the first time, over-expression of the IL-18 family in testicular tissues of sexually immature mice, as compared to mature mice, as well as the expression of IL-18 in the different stages of differentiation of testicular germ cells. Thus, our results may indicate involvement of the endocrine system (gonadotropins and testosterone) in the regulation of the testicular IL-18 family, which could be involved in the regulation of testicular functions, development and spermatogenesis under physiological conditions.  相似文献   

4.
5.
This review will focus the roles of TNF-alpha, IL-1 alpha, and IL-1 beta in the mammalian testis and in two testicular pathologies, testicular torsion and orchitis. TNF alpha in the testis is produced by round spermatids, pachytene spermatocytes, and testicular macrophages. The type 1 TNF receptor has been found on Sertoli and Leydig cells and numerous studies suggest a paracrine mode of action for TNF alpha in the normal testis. IL-1 alpha has been reported to be produced by Sertoli cells, testicular macrophages, and possibly postmeiotic germ cells. IL-1 receptors have been reported on Sertoli cells, Leydig cells, testicular macrophages, and germ cells suggesting both autocrine and paracrine functions. While these proinflammatory cytokines have important roles in normal testicular homeostasis, an elevation of their expression can lead to testicular dysfunctions. Testicular torsion is a clinical pathology with results in testicular ischemia and surgical intervention is often required for reperfusion. A pivotal role for IL-1beta in the pathology of testicular torsion has been recently described whereby an increase in IL-1beta production after reperfusion of the testis is correlated with the activation of the stress-related kinase, c-jun N-terminal kinase, and ultimately resulting in neutrophil recruitment to the testis and germ cell apoptosis. In autoimmune orchitis, on the other hand, TNF alpha produced by T-lymphocytes and macrophages of the testis has been implicated in the development and progression of the disease. Thus, both proinflammatory cytokines, TNF alpha and IL-1, have significant roles in normal testicular functions as well as in certain testicular pathologies.  相似文献   

6.
The present study was conducted to evaluate the development of spermatogenesis and utility of using electroporation to stably transfect germ cells with the beta-galactosidase gene in neonatal bovine testicular tissue ectopically xenografted onto the backs of recipient nude mice. Bull testicular tissue from 4-wk donor calves, which contains a germ cell population consisting solely of gonocytes or undifferentiated spermatogonia, was grafted onto the backs of castrated adult recipient nude mice. Testicular grafts significantly increased in weight throughout the grafting period and the timing of germ cell differentiation in grafted tissue was consistent with postnatal testis development in vivo relative to the bull. Seminiferous tubule diameter also significantly increased with advancing time after grafting. At 1 wk after grafting, gonocytes in the seminiferous cords completed migration to the basement membrane and differentiated germ cell types could be observed 24 wk after grafting. The presence of elongating spermatids at 24 wk confirmed that germ cell differentiation occurred in the bovine tissue. Leydig cells in the grafted bovine tissue were also capable of producing testosterone in the castrated recipient mice from 4 wk to 24 wk after grafting at concentrations that were similar to levels in intact, nongrafted control mice. The testicular tissue that had been electroporated with a beta-galactosidase expression vector showed tubule-specific transgene expression 24 wk after grafting. Histological analysis showed that transgene expression was present in both Sertoli and differentiated germ cells but not in interstitial cells. The system reported here has the potential to be used for generation of transgenic bovine spermatozoa.  相似文献   

7.
This study demonstrates preservation of tissue integrity, maintenance of proliferating spermatogonia and Leydig cell functionality after vitrification and transplantation of non-human primate immature testicular tissue. The objective was to assess the potential of vitrification of non-human primate immature testicular tissue (ITT) in an in vivo xenotransplantation model. Testicular tissue was obtained from one immature rhesus monkey (Macaca mulatta) aged 4 years. Collection and vitrification of testicular tissue, followed by short-term xenografting (3 wks) to nude mice were performed to evaluate and compare vitrified/warmed and fresh tissue. Fresh ungrafted tissue was used for control purposes. Cell density and seminiferous tubule (ST) integrity were assessed by light microscopy. Presence of spermatogonia (SG) (MAGE-A4), proliferation (Ki-67) and Leydig cell (LC) functionality (3β-hydroxysteroid dehydrogenase; 3β-HSD) were evaluated by immunohistochemistry (IHC). Qualitative analysis revealed preservation of the histologic characteristics of SG and Sertoli cells (SCs), as well as cell-cell cohesion and cell adhesion to the basement membrane, in both vitrified and fresh grafted tissues. Survival of SG able to proliferate and functional LCs was confirmed by IHC in fresh and vitrified grafts. In conclusion, vitrification appears to be a promising approach, representing an alternative strategy to slow-freezing in the emerging field of ITT cryopreservation and cryobanking.  相似文献   

8.
Recently, it was found by two research groups that LY6A, known widely in the stem cell community as stem cell antigen-1 or SCA-1, is expressed on testicular side population (SP) cells. Whether these SP cells are spermatogonial stem cells is a point of disagreement and, therefore, the identity of the LY6A-positive cells as well. We studied the expression pattern of LY6A in testis by immunohistochemistry and found it to be expressed in the interstitial tissue on peritubular myoid, endothelial, and spherical-shaped peritubular mesenchymal cells. To address the question whether LY6A has a function in spermatogenesis or testis development, we studied the testis of Ly6a(-/-) mice (allele Ly6a(tm1Pmf)). We found no morphological abnormalities or differences in numbers of spermatogonia, spermatocytes, Leydig cells, or macrophages in relation to the number of Sertoli cells. Therefore, we conclude that LY6A expression does not influence testis development or spermatogenesis and that spermatogonial stem cells are LY6A negative.  相似文献   

9.
In the testis, FSH has been shown to induce the expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) from Sertoli cells in vitro. This study was performed to elucidate further the cellular origin of testicular TIMP-1 and its expression by hormonal and paracrine factors. This is the first report on the expression of testicular TIMP-1 in vivo. TIMP-1 mRNA in whole testis was decreased after hypophysectomy and strongly increased by the injection of FSH-S17 to hypophysectomized rats. Primary cultures of both peritubular and Sertoli cells showed basal expression of TIMP-1 mRNA. In contrast, we were unable to detect TIMP-1 mRNA in Leydig cells, freshly isolated immature germ cells (primary spermatocytes and spermatids), or residual bodies. We further show that treatment of Sertoli cells with 8-(4-chlorophenyl)thio-cAMP (8-CPTcAMP) in combination with 12-O-tetradecanoylphorbol 13-acetate (TPA) or Ca(2+) inducers (calcium ionophore A23187 or thapsigargin) had additive (TPA) and synergistic effects (Ca(2+)) on the level of TIMP-1 mRNA and secreted protein. We also show that both the level of TIMP-1 mRNA and secreted protein from Sertoli cells were strongly increased by residual bodies, as well as by the cytokine interleukin-1alpha. TIMP-1 was not up-regulated by either 8-CPTcAMP or interleukin-1alpha in peritubular cells. In contrast to the regulated secretory fraction of TIMP-1, we also detected constitutively expressed immunoreactive TIMP-1 in the nucleus of Sertoli cells, suggesting a role of nuclear TIMP-1 in these cells. In conclusion, our data show that secretion of TIMP-1 from Sertoli cells is highly regulated by hormonal and local processes in the testis, indicating that TIMP-1 is of physiological importance during both testicular development and spermatogenesis.  相似文献   

10.
In various species, androgens and estrogens regulate the function of testicular Leydig, Sertoli, peritubular myoid, and germ cells by binding to their respective receptors and eliciting a cellular response. Androgen receptor (AR) is expressed in Sertoli cells, peritubular myoid cells, Leydig cells and perivascular smooth muscle cells in the testis depending on the species, but its presence in germ cells remains controversial. Two different estrogen receptors have been identified, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), and their localization and function in testicular cells varies depending on the species, developmental stage of the cell and type of receptor. The localization of AR in an immature and mature stallion has been reported but estrogen receptors have only been reported for the mature stallion. In the present study, the localizations of AR and ERα/ERβ were investigated in pre-pubertal, peri-pubertal and post-pubertal stallions. Testes were collected by routine castration from 21 horses, of light horse breeds (3 months-27 years). Animals were divided into the following age groups: pre-pubertal (3-11 months; n=7), peri-pubertal (12-23 months; n=7) and post-pubertal (2-27 years; n=7). Testicular tissue samples were fixed and embedded, and the presence of AR, ERα and ERβ was investigated by immunohistochemistry (IHC) using procedures previously validated for the horse. Primary antibodies used were rabbit anti-human AR, mouse anti-human ERβ and rabbit anti-mouse ERα. Sections of each region were incubated with normal rabbit serum (NRS; AR and ERα) or mouse IgG (ERβ) instead of primary antibody to generate negative controls. Androgen receptors were localized in Leydig, Sertoli and peritubular myoid cells of all ages. Estrogen receptor alpha was localized in Leydig and germ cells of all ages but only in pre- and peri-pubertal Sertoli cells and post-pubertal peritubular myoid cells. Estrogen receptor beta was localized in Leydig and Sertoli cells of all ages but in only pre-pubertal germ cells and absent in peritubular myoid cells of all ages. Taken together, the data suggest that estrogen regulates steroidogenesis by acting through ERα and ERβ in the Leydig cells and promotes gametogenesis by acting through ERβ in the Sertoli cells and ERα in the germ cells. In contrast androgen receptors are not found in germ cells throughout development and thus are likely to support spermatogenesis by way of a paracrine/autocrine pathway via its receptors in Leydig, Sertoli and peritubular myoid cells.  相似文献   

11.
Dax1 regulates testis cord organization during gonadal differentiation   总被引:5,自引:0,他引:5  
Mutations of the DAX1 nuclear receptor gene cause adrenal hypoplasia congenita, an X-linked disorder characterized by adrenal insufficiency and hypogonadotropic hypogonadism. Targeted deletion of Dax1 in mice also reveals primary testicular dysgenesis, which is manifest by obstruction of the rete testis by Sertoli cells and hyperplastic Leydig cells, leading to seminiferous tubule dilation and degeneration of germ cells. Because Dax1 is expressed early in gonadal development, and because Sertoli and Leydig cells are located ectopically in the adult, we hypothesized that these testis abnormalities are the result of an early defect in testis development. In Dax1(-/Y) males, the gonad develops normally until 12.5 dpc. However, by 13.5 dpc, the testis cords are disorganized and incompletely formed in Dax1-deficient mice. The number of germ and Sertoli cells is unchanged, and the expression of Sertoli-specific markers appears to be normal. However, the number of peritubular myoid cells, which normally surround the testis cords, is reduced. BrdU labeling of peritubular myoid cells is low, consistent with decreased proliferation. The basal lamina produced by peritubular myoid and Sertoli cells is disrupted, leading to open and incompletely formed testis cords. Leydig cells, which normally reside in the peritubular space and extend from the coelomic surface to the dorsal surface of the gonad, are restricted to the coelomic surface of Dax1-deficient testis. We conclude that Dax1 plays a crucial role in testis differentiation by regulating the development of peritubular myoid cells and the formation of intact testis cords. The developmental abnormalities in the Dax1-deficient testis lay the foundation for gonadal dysgenesis and infertility in adult mice and, potentially in humans with DAX1 mutations.  相似文献   

12.
13.
In the present study we examined the involvement of interleukin (IL)-1alpha, -1beta, FSH, and lipopolysaccharide (LPS) in the regulation of IL-1alpha and -1beta production by Sertoli cells under in vitro conditions. Sertoli cell cultures from immature mice produced constitutively basal levels of intracellular IL-1alpha. Stimulation of Sertoli cell cultures with LPS (5 microgram/ml) resulted in a maximal production of intracellular IL-1alpha 2 h after the stimulation. Thereafter, these levels decreased but remained significantly higher within 24 h after stimulation than those in control cultures. The effect of LPS on IL-1alpha production was dose dependent. FSH did not show any effect on intracellular IL-1alpha production by Sertoli cells. IL-1alpha could not be detected in supernatants of unstimulated or stimulated Sertoli cell cultures. Sertoli cell cultures stimulated with recombinant IL-1alpha induced optimal intracellular levels of IL-1alpha within 2 h of stimulation. These levels remained high 24 h after stimulation. However, stimulation of Sertoli cell cultures with IL-1beta induced a peak of IL-1alpha production 8 h after stimulation. These levels decreased 24 h after the stimulation but were still found to be significantly higher than those in control cultures. The addition of IL-1 receptor antagonist (IL-1ra) to Sertoli cell cultures did not significantly alter their capacity to produce IL-1alpha. However, the stimulatory effects of recombinant IL-1alpha on IL-1alpha production by Sertoli cell cultures were reversed by the concomitant addition of recombinant IL-1ra. No immunoreactive IL-1beta could be detected in lysates or conditioned media of immature murine Sertoli cells under any of the stimulatory conditions outlined. Our results may suggest the involvement of physiological (IL-1) and pathophysiological factors (LPS) in the regulation of spermatogenesis and spermiogenesis processes and male fertility.  相似文献   

14.
Testicular development is a complicated process involving differentiation and arrangement of several cell types. To analyze the process of testicular organization we examined the sequence of the appearance of testicular structures induced in fetal ovaries following transplantation. Fetal mouse ovaries on the twelfth day of gestation were transplanted beneath the kidney capsules of adult male mice. They continued to develop morphologically as ovaries until the eleventh day after transplantation, when seminiferous cord formation and testosterone production began in addition to follicle development (ovotestes). Between the eleventh and fourteenth day after transplantation, ovarian grafts frequently contained transitional structures consisting of Sertoli cells, pregranulosa cells, a third type of cells which show intermediate characteristics between Sertoli and pregranulosa cells, and oocytes enclosed by common basal lamina. Leydig cells or peritubular myoid cells were not found in the transitional area, whereas these cells were present around seminiferous cords composed only of Sertoli cells. Oocytes were absent or degenerated in the well-developed seminiferous cords. The present findings suggest that, in ovarian grafts, pregranulosa cells can differentiate into Sertoli cells, which are responsible for the organization of the seminiferous cords, degeneration of oocytes, and differentiation of other testicular somatic cell types.  相似文献   

15.
Summary The present investigation is concerned with the morphological changes observed in human testicular tissue following prolonged estrogen administration. Testicular material obtained from 11 transsexual patients who had been submitted to long-term estrogen treatment prior to sex-reversal surgery was studied by means of light- and electron microscopy.The testes of all patients examined present a more or less uniform appearance: There are narrow seminiferous cords surrounded by an extensively thickened lamina propria. They contain Sertoli cells and spermatogonia exclusively. There is no evidence of typical Leydig cells.The persisting spermatogonia show the characteristic features of pale type-A spermatogonia, whereas dark type-A spermatogonia are almost completely eliminated from the epithelium. In view of the fact that spermatogonia that survived radiotherapy and treatment with various noxious agents have recently been regarded as the stem cells of the human testis, it is suggested that also the majority of those spermatogonial types that are less sensitive to disturbances of the endocrine balance may consist of stem cells. The present results, therefore, corroborate the concept that the stem cells of the human testis may be derived from pale type-A spermatogonia or the variants of this cell type.Sertoli cells display two types of ovoid nuclei. In contrast to untreated material the nuclei lie adjacent to the basal lamina, and organelles and telolysosomes are confined to the apical cytoplasm. The apico-basal differentiation of mature cells, therefore, is not observed. Moreover, typical organelles and inclusions of mature cells are absent, as are the junctional specializations. Thus, Sertoli cells have transformed into immature cells, resembling precursors prior to puberty.Fibroblast-like cells in the interstitial tissue, which display strongly lobulated nuclei, a well-developed smooth endoplasmic reticulum, lipid droplets, and numerous inclusions are assumed to represent dedifferentiated Leydig cells.Since after estrogen treatment serum testosterone and gonadotropin levels are known to be reduced, it appears that the morphological changes correlate well with the endocrine status.  相似文献   

16.
Inhibin B is a testicular peptide hormone that regulates FSH secretion in a negative feedback loop. Inhibin B is a dimer of an alpha and a beta(B) subunit. In adult testes, the cellular site of production is still controversial, and it was hypothesized that germ cells contribute to inhibin B production. To determine which cell types in the testes may produce inhibin B, the immunohistochemical localization of the two subunits of inhibin B were examined in adult testicular biopsies with normal spermatogenesis, spermatogenic arrest, or Sertoli cell only (SCO) tubules. Moreover, using in situ hybridization with mRNA probes, the mRNA expression patterns of inhibin alpha and inhibin/activin beta(B) subunits have been investigated. In all testes, Sertoli cells and Leydig cells showed positive immunostaining for inhibin alpha subunit and expressed inhibin alpha subunit mRNA. Using inhibin beta(B) subunit immunoserum on testes with normal spermatogenesis and with spermatogenic arrest, intense labeling was located in germ cells from pachytene spermatocytes to round spermatids but not in Sertoli cells. Inhibin beta(B) subunit mRNA expression was intense in germ cells from spermatogonia to round spermatids and in Sertoli cells in these testes. In testes with SCO, high inhibin beta(B) subunit mRNA labeling density was observed in both Sertoli cells and Leydig cells, whereas beta(B) subunit immunostaining was negative for Sertoli cells and faintly positive for Leydig cells. These results agree with the recent opinion that inhibin B in adult men is possibly a joint product of Sertoli cells and germ cells.  相似文献   

17.
Sertoli-spermatogenic cell co-cultures prepared from sexually immature rats (20-22 days old) and maintained in serum-free, hormone/growth factor-supplemented medium were used to determine the cell-specific localization of the growth factor somatomedin-C (SM-C). SM-C localization studies were carried out by indirect immunofluorescence using a monoclonal antibody (sm-1.2) to SM-C. In cultured rat hepatocytes, Sertoli and testicular peritubular cells, SM-C immunoreactivity was observed as a diffuse distribution of discrete immunofluorescent granules. Radio-immunoassay experiments using a rabbit antibody against human SM-C showed that testicular peritubular cells and Sertoli cells in primary culture accumulated SM-C in the medium. In spermatogenic cells co-cultured with subjacent Sertoli cells, immunoreactive SM-C was associated with pachytene spermatocytes but not with spermatogonia or early meiotic prophase spermatocytes (leptotene or zygotene). Both Sertoli cells and pachytene spermatocytes displayed binding sites for exogenously added SM-C. SM-C6 binding to spermatocytes reaching an advanced stage of meiotic prophase suggests a possible role of this growth factor in the meiotic process.  相似文献   

18.
Spermatogenesis is a highly controlled process of proliferation, meiosis, and differentiation. Systemic infection and chronic inflammation can impair testicular steroidogenesis and spermatogenesis. In this study, we examined the effect of systemic infection--intraperitoneal (i.p.) injection of lipopolysaccharide (LPS)--on the expression levels of IL-6 in the testis of sexually immature and adult mice. IL-6 levels in testicular homogenates of immature mice were significantly higher than in mature mice (both protein and RNA levels), before and after LPS injection. Injection of LPS (i.p.) into mature mice over 3 hours, significantly increased testicular IL-6 protein and mRNA levels (as demonstrated by ELISA and RT-PCR respectively) compared to the control group. Injection of LPS over 24 hours significantly increased IL-6 mRNA expression, but it did not significantly affect IL-6 protein levels in the homogenates. In contrast, stimulation of immature mice with LPS (2, 20 or 100 microg/mL) over 3 hours or LPS (2 or 20 microg/mL) over 24 hours, significantly increased testicular IL-6 (both protein and mRNA expression). The levels of testicular IL-6 (protein) in the homogenates were not significantly increased after stimulation with 100 microg/mL over 24 hours, but they were significantly increased at the mRNA level. Our results demonstrate, for the first time, the over-expression of IL-6 in testicular homogenates of mature and immature mice following systemic inflammation (i.p. injection of LPS). These results suggest the possibility of the involvement of systemic infection/inflammation, through the elevation of testicular IL-6, in testicular functions, which may affect male fertility. Also, high levels of IL-6 during pathological conditions, could play a role in protecting testicular tissue.  相似文献   

19.
GP90-MC301, a 90-kDa glycoprotein recognized by the monoclonal antibody MC301, is a reliable stage-specific marker for preleptotene to pachytene spermatocytes in adult rat testes. In this study we confirmed that the glycoprotein is also useful as a marker for germ cells in prenatal and postnatal testes. Immunohistochemical analysis showed a dramatic change in GP90-MC301 expression in germ cells during testis development. Strong expression was detected in primordial germ cells at embryonic day (E) 13 and in gonocytes at E16, and the expression was then markedly reduced at around the time (E18) gonocytes undergo G1/G0 arrest, and was not restored in gonocytes or spermatogonia afterward. Thereafter, it reappeared in primary spermatocytes in the prepubertal period. Testicular somatic cells such as Sertoli cells, Leydig cells, and peritubular myoid cells expressed GP90-MC301 during specific periods which were largely correlated with periods of active proliferation of these testicular somatic cells. Western blotting showed that GP90-MC301 was expressed during testis development without a change in its molecular size. Thus, GP90-MC301 is potentially useful for the analysis of not only spermatogenesis but also early testis development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号