首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants. Furthermore, gene expression analyses are deciphering coordinated mechanisms of regulation and response to copper and iron limitation. Prioritizing the use of metals in essential versus dispensable processes, and substituting specific metalloproteins by other metal counterparts, are examples of plant strategies to optimize copper and iron utilization. The metabolic links between copper and iron homeostasis are well documented in yeast, algae and mammals. In contrast, interactions between both metals in vascular plants remain controversial, mainly owing to the absence of copper-dependent iron acquisition. This review describes putative interactions between both metals at different levels in plants. The characterization of plant copper and iron homeostasis should lead to biotechnological applications aimed at the alleviation of iron deficiency and copper contamination and, thus, have a beneficial impact on agricultural and human health problems.  相似文献   

2.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

3.
4.
Old Iron, Young Copper: from Mars to Venus   总被引:3,自引:0,他引:3  
Iron and copper are metals which play an important role in the living world. From a brief consideration of their chemistry and biochemistry we conclude that the early chemistry of life used water soluble ferrous iron while copper was in the water-insoluble Cu(I) state as highly insoluble sulphides. The advent of oxygen was a catastrophic event for most living organisms, and can be considered to be the first general irreversible pollution of the earth. In contrast to the oxidation of iron and its loss of bioavailability as insoluble Fe(III), the oxidation of insoluble Cu(I) led to soluble Cu(II). A new iron biochemistry became possible after the advent of oxygen, with the development of chelators of Fe(III), which rendered iron once again accessible, and with the control of the potential toxicity of iron by its storage in a water soluble, non-toxic, bio-available storage protein (ferritin). Biology also discovered that whereas enzymes involved in anaerobic metabolism were designed to operate in the lower portion of the redox spectrum, the arrival of dioxygen created the need for a new redox active metal which could attain higher redox potentials. Copper, now bioavailable, was ideally suited to exploit the oxidizing power of dioxygen. The arrival of copper also coincided with the development of multicellular organisms which had extracellular cross-linked matrices capable of resisting attack by oxygen free radicals. After the initial `iron age' subsequent evolution moved, not towards a `copper age', but rather to an `iron-copper' age. In the second part of the review, this symbiosis of iron and copper is examined in yeast. We then briefly consider iron and copper metabolism in mammals, before looking at iron-copper interactions in mammals, particularly man, and conclude with the reflection that, as in Greek and Roman mythology, a better understanding of the potentially positive interactions between Mars (iron) and Venus (copper) can only be to the advantage of our species.  相似文献   

5.
Transition metals such as iron, zinc, copper, and manganese are essential for the growth and development of organisms ranging from bacteria to mammals. Numerous studies have focused on the impact of iron availability during bacterial and fungal infections, and increasing evidence suggests that copper is also involved in microbial pathogenesis. Not only is copper an essential cofactor for specific microbial enzymes, but several recent studies also strongly suggest that copper is used to restrict pathogen growth in vivo. Here, we review evidence that animals use copper as an antimicrobial weapon and that, in turn, microbes have developed mechanisms to counteract the toxic effects of copper.  相似文献   

6.
7.
Iron, copper and zinc are essential metals for cell metabolism. Plants have evolved different schemes to efficiently mobilize low-solubility nutrients such as metals from their environment and to transport them between organs. In this review we highlight the divergences and convergences of the iron, copper and zinc uptake, transport and homoeostatic pathways.  相似文献   

8.
Iron and copper have a wealth of functions in biological systems, which makes them essential micronutrients for all living organisms. Defects in iron and copper homeostasis are directly responsible for diseases, and have been linked to impaired development, metabolic syndromes and fungal virulence. Consequently, it is crucial to gain a comprehensive understanding of the molecular bases of iron- and copper-dependent proteins in living systems. Simon Labbé maintains parallel programs on iron and copper homeostasis using the fission yeast Schizosaccharomyces pombe (Schiz. pombe) as a model system. The study of fission yeast transition-metal metabolism has been successful, not only in discerning the genes and pathways functioning in Schiz. pombe, but also the genes and pathways that are active in mammalian systems and for other fungi.  相似文献   

9.
10.
The MuS1 gene is highly homologous to many stress-related proteins in plants. Here, we characterized whether a new candidate gene, MuS1, is related to multiple stress tolerance in yeast as it is in plants. Transgenic yeast strain expressing MuS1 were more resistant to hydrogen peroxide, menadione, high salinity, metals (i.e., cadmium, copper, iron, and zinc), ethanol, and lactic acid than wild-type strain transformed with a vector alone. In addition, the alcohol yield of the transgenic yeast strain was higher than that of the wild-type strain during the batch fermentation process. These results show that MuS1-expressing transgenic yeast strain exhibits enhanced alcohol yield as well as tolerance to abiotic stresses, especially metal stress.  相似文献   

11.
12.
The redox-active metals iron and manganese are required for energy metabolism, protection against oxidative stress and defense against infections. In eukaryotes, both divalent metals are transported by Nramp transporters. The sequence of these transporters was remarkably conserved during evolution. Several bacterial Nramp homologs (MntH) are also proton-dependent manganese transporters. Here, we present phylogenetic evidence for the polyphyletic origins of three groups of MntH proteins and for possible Nramp horizontal gene transfer with eukaryotes. We propose that the evolution of the MntH/Nramp family is related to adaptation to oxidative environments, including those arising during infection of animals and plants.  相似文献   

13.
Rhomboid proteases are present in bacteria, insects, yeasts, parasites, mammals and plants. These proteases are part of the regulated intramembrane proteolysis mechanism for controlling processes such as development, stress response, lipid metabolism and mitochondrial membrane remodeling. Specific rhomboid protease substrates linked to these processes have been identified from insects to mammals, but not for plants. Identification of a link is a key step for elucidating the role of each rhomboid protease. Here, using a yeast mitochondria-based approach, we report evidence of a potential link between a plastid translocon component and organellar rhomboid proteases. This identification expands the types of processes involving regulated intramembrane proteolysis potentially to include at least one aspect of plastid protein transport.  相似文献   

14.
Metals are important in biochemistry, and the concentrations of many are highly regulated. This prologue introduces the thematic series "Metals in Biology," which includes minireviews on three metals: iron, copper, and selenium. Deficiencies and excesses of all three of these metals cause problems in human health. The three minireviews deal with regulation of iron homeostasis, the roles of copper metabolism in cell regulation and disease, and the functions of selenoproteins.  相似文献   

15.
Among higher plants graminaceous species have the unique ability to efficiently acquire iron from alkaline soils with low iron solubility by secreting phytosiderophores, which are hexadentate metal chelators with high affinity for Fe(III). Iron(III)-phytosiderophores are subsequently taken up by roots via YS1 transporters, that belong to the OPT oligopeptide transporter family. Despite its physiological importance at alkaline pH, uptake of Fe-phytosiderophores into roots of wild-type maize plants was greater at acidic pH and sensitive to the proton uncoupler CCCP. To access the mechanism of Fe-phytosiderophore acquisition, ZmYS1 was expressed in an iron uptake-defective yeast mutant and in Xenopus oocytes, where ZmYS1-dependent Fe-phytosiderophore transport was stimulated at acidic pH and sensitive to CCCP. Electrophysiological analysis in oocytes demonstrated that Fephytosiderophore transport depends on proton cotransport and on the membrane potential, which allows ZmYS1-mediated transport even at alkaline pH. We further investigated substrate specificity and observed that ZmYS1 complemented the growth defect of the zinc uptake-defective yeast mutant zap1 and transported various phytosiderophore-bound metals into oocytes, including zinc, copper, nickel, and, at a lower rate, also manganese and cadmium. Unexpectedly, ZmYS1 also transported Ni(II), Fe(II), and Fe(III) complexes with nicotianamine, a structural analog of phytosiderophores, which has been shown to act as an intracellular metal chelator in all higher plants. Our results show that ZmYS1 encodes a proton-coupled broad-range metal-phytosiderophore transporter that additionally transports Fe- and Ni-nicotianamine. These biochemical properties indicate a novel role of YS1 transporters for heavy metal homeostasis in plants.  相似文献   

16.
17.
湿地植物根表铁膜研究进展   总被引:15,自引:3,他引:12  
为了适应渍水环境,许多湿地植物都具有根系泌氧、形成铁膜的能力。因铁膜具有特殊的物理或化学结构,可以通过吸附和共沉淀作用影响元素在土壤中的化学行为和生物有效性,在植物吸收营养元素和重金属中起重要作用。综述了湿地植物根表铁膜的形成、影响因素以及根表铁膜对营养元素和重金属的生态环境效应,从表征技术方面阐述了根表铁膜的作用机制。对今后的研究方向给出如下建议:(1)扩大研究领域;(2)铁膜形成的动态变化过程;(3)铁膜对植物生理形态的影响;(4)利用先进的表征技术以确定铁膜的作用机制。  相似文献   

18.
The speciation of metals plays an important role in their bioavailability. In the case of anaerobic reactors for the treatment of wastewaters, the ubiquitous presence of sulfide leads to extensive precipitation of metals like nickel and cobalt, which are essential for the metabolism of the anaerobic microorganisms that carry out the mineralization of the pollutants present in the wastewater. In practice, nickel, cobalt, and iron are added in excessive amounts to full-scale installations. This study is concerned with the complexation of nickel and cobalt with yeast extract and its effect on the biogas production by methanogenic biomass. Adsorptive stripping voltammetry (AdSV) was used to get information about the stability and complexing capacity of the metal-yeast extract complexes formed. Nickel and cobalt form relatively strong organic complexes with yeast extract. The bioavailability of these essential metals in anaerobic batch reactors was dramatically increased by the addition of yeast extract. This is due to the formation of dissolved bioavailable complexes, which favors the dissolution of metals from their sulfides. Trace doses of yeast extract may be effective in keeping additions of essential metals to anaerobic reactors at a minimum.  相似文献   

19.
20.
Since copper (Cu) is essential in key physiological oxidation reactions, organisms have developed strategies for handling Cu while avoiding its potentially toxic effects. Among the tools that have evolved to cope with Cu is a network of Cu homeostasis factors such as Cu-transporting P-type ATPases that play a key role in transmembrane Cu transport. In this work we present the functional characterization of an Arabidopsis Cu-transporting P-type ATPase, denoted heavy metal ATPase 5 (HMA5), and its interaction with Arabidopsis metallochaperones. HMA5 is primarily expressed in roots, and is strongly and specifically induced by Cu in whole plants. We have identified and characterized plants carrying two independent T-DNA insertion alleles, hma5-1 and hma5-2. Both mutants are hypersensitive to Cu but not to other metals such as iron, zinc or cadmium. Interestingly, root tips from Cu-treated hma5 mutants exhibit a wave-like phenotype at early stages and later on main root growth completely arrests whereas lateral roots emerge near the crown. Accordingly, these lines accumulate Cu in roots to a greater extent than wild-type plants under Cu excess. Finally, yeast two-hybrid experiments demonstrate that the metal-binding domains of HMA5 interact with Arabidopsis ATX1-like Cu chaperones, and suggest a regulatory role for the plant-specific domain of the CCH Cu chaperone. Based on these findings, we propose a role for HMA5 in Cu compartmentalization and detoxification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号