首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirty-five taxa (128 clonal cultures) of Antarctic algae isolated from various habitats were assayed for growth over a range of 2–34°C. Isolates, all unialgal and two axenic, varied markedly in their temperature-growth responses. Only four taxa belonging to either the Chlamydomonadaceae or Ulotrichaceae were obligately cold-adapted and incapable of growth at ≥20°C. All isolates grew at temperatures ranging from 7.5 to 18°C, and a few were incapable of growth at ≤5°C. Over one-third of the isolates grew at 30°C, but none grew at 34°C. Percentages of cold-adapted clones correlated well with the more stable low temperature habitats. Four chlamydomonad isolates displayed optimum temperatures for growth near their maximum temperatures for growth, both temperatures being well above those of the native habitats. This temperature-growth response suggests a closer relationship to algae from more moderate thermal regions than one might have supposed. However, the ability to grow at low temperatures and the inability to grow at 34°C suggest that these Antarctic algae are cold temperature adapted. Growth capability at low in situ temperatures is considered more useful ecologically than physiologically-defined categories for algae based on their maximum temperature for growth.  相似文献   

2.
The seasonal periodicity of taxa of Chrysophyceae and Synurophyceae from a small New England lake is described for the period September 1983 through June 1988. We found 51 taxa, including 29 that accounted for over 10% of the total in at least one collection. The taxa were fitted into one of five seasonal patterns. Patterns I and II represented taxa restricted to warm (pattern I) or cold (pattern II) months, respectively. Pattern HI represented organisms that began growth in the summer, persisted through autumn and disappeared with the onset of an ice cover. Pattern IV was an extension of pattern III, in which the taxon remained in the plankton throughout the winter and disappeared soon after ice out. Species without a clear seasonal pattern were grouped as pattern V. The seasonal periodicity of the flora, as examined with ordination analyses, was found to remain remarkedly similar during the 58–month study. Except for episodes of low pH during spring snow melt and unseasonally warm or cold weather, sample scores followed a fairly consistent pattern along the first and second primary axes. Water temperature, specific conductance, and pH were important variables that controlled changes in the species composition during the course of a given year. The flora was used to develop an inference model for water temperature. According to the analyses, the remains of a surface sediment sample represented a flora that grew primarily during the late autumn period at 7.6 ° C. Ways in which seasonal data could be utilized to improve paleolimnological inference work are discussed.  相似文献   

3.
Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many “warm” picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin‐rich strains outperformed the phycocyanin‐rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria.  相似文献   

4.
Forty-nine strains of filamentous, mat-forming cyanobacteria isolated from the Arctic, subarctic and Antarctic environments were screened for their potential use in outdoor waste-water treatment systems designed for cold north-temperate climates. The most promising isolate (strain E18, Phormidium sp. from a high Arctic lake) grew well at low temperatures and formed aggregates (flocs) that could be readily harvested by sedimentation. We evaluated the growth and nutrient uptake abilities of E18 relative to a community of green algae (a Chlorococcalean assemblage, denoted Vc) sampled from a tertiary treatment system in Valcartier, Canada. E18 had superior growth rates below 15°C Canada. (μ = 0.20 d-1 at 10°C under continuous irradiance of 225 μmol photon m-2 s-1) and higher phosphate uptake rates below 10°C (k = 0.050 d-1 at 5°C) relative to Vc (μ=0.087 d-1 at 10°C and k = 0.020 d-1 at 5°C, respectively). The green algal assemblage generally performed better than E18 at high temperatures (at 25°C, μ = 0.39 d-1 and k = 0.34 d-1 for Vc; μ = 0.28 d-1 and k = 0.33 d-1 for E18). However, E18 removed nitrate more efficiently than Vc at most temperatures including 25°C. Polar cyanobacteria such as strain E18 are appropriate species for waste-water treatment in cold climates during spring and autumn. Under warmer summer conditions, fast-growing green algae such as the Vc assemblage are likely to colonize and dominate, but warm-water Phormidium isolates could be used at that time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Temperature tolerances and relative growth rates were determined for different isolates of the tropical to warm temperate seaweed species Cladophoropsis membranacea (C. Agardh) Boergesen (Siphonodadales, Chlorophyta) and some related taxa. Most isolates of C membranacea survived undamaged at 18° C for at least 8 weeks. Lower temperatures (5°–15°C) were tolerated for shorter periods of time but caused damage to cells. All isolates survived temperatures up to 34° C, whereas isolates from the eastern Mediterranean and Red Sea survived higher temperatures up to 36°C. Growth occurred between 18° and 32° C, but an isolate from the Red Sea had an extended growth range, reaching its maximum at 35°C. Struvea anastomosans (Harvey) Piccone & Grunow, Cladophoropsis sundanensis Reinbold, and an isolate of C. membranacea from Hawaii were slightly less cold- tolerant, with damage occurring at 18°C. Upper survival temperatures were between 32° and 36° C in these taxa. Temperature response data were mapped onto a phylogenetic tree. Tolerance for low temperatures appears to be a derived character state that supports the hypothesis that C. membranacea originated from a strictly tropical ancestor. Isolates from the Canary Islands, which is near the northern limit of distribution, are ill adapted to local temperature regimes. Isolates from the eastern Mediterranean and Red Sea show some adaptation to local temperature stress. They are isolated from those in the eastern Atlantic by a thermal barrier at the entrance of the Mediterranean.  相似文献   

6.
This paper describes the properties of rhizobia from extreme soil environments which are characterized by high temperatures, salt concentrations and also rather extreme pH values due to the contamination by spray water from the sea. Coastal sand dunes are such extreme habitats which support a variety of microorganisms. To explore stress‐tolerant rhizobia, ten rhizobial strains were isolated from five wild legumes from two dune systems of the southwest coast of India. They were tested for growth performance or tolerance at a wide range of temperatures (30–55 °C), salinity (0.1–4.5 % w/v) and initial pH values (3.5–11). Growth of five isolates was highest between 30–40 °C, while four isolates showed considerable growth up to 2.5 % salinity (at 35 °C). All isolates demonstrated elevated growth at an initial pH of between 5–6 (at 35 °C and 2 % salinity), while five isolates had additional growth peaks at an initial pH of between pH 7.5–9 indicating alkaline tolerance and were suitable for efficient phosphate solubilization. The stress tolerance traits of these rhizobia are of potential value for strain improvement in agriculture or the bioremediation of soils at elevated temperatures, salinity and extreme pH values, and thus are of high biotechnological importance.  相似文献   

7.
The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper‐osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.  相似文献   

8.
Aim Western mosquitofish (Gambusia affinis) have been linked with the decline of native fish and amphibians throughout the world. Separation along the temperature niche axis may promote the long‐term coexistence of introduced western mosquitofish, with native species in temperate regions. Recent research has shown that western mosquitofish can reduce the recruitment of native least chub (Iothichthys phlegethontis) endemic to the Bonneville Basin. We tested the hypotheses that cold temperatures (≤ 15 °C in the summer, freezing winters) would: (1) reduce the aggressive and predatory effects of western mosquitofish on least chub, and (2) eliminate the overwinter survival and recruitment of western mosquitofish while having little effect on least chub recruitment. Location Bonneville Basin of Utah, USA. Methods We used short‐term tests in the laboratory at the level of individuals and manipulated temperature (warm, cold and seasonal treatments) in long‐term experiments using mesocosms at the population level. Results Cold temperatures (≤ 15 °C) reduced the aggression and predation of western mosquitofish on least chub at the level of individuals. At the population level, however, cool summers (≤ 15 °C) eliminated recruitment in both species because they required warm summers (c. 20–30 °C) to survive freezing winters. Although least chub had an overwinter advantage in survival (75% least chub, 45% western mosquitofish), it was overwhelmed by the rapid reproduction of western mosquitofish as temperatures increased in the summer. Main conclusions Studies at the level of populations are necessary to understand the ultimate effects of introduced species on native taxa. Separation along the temperature niche axis was not sufficient to promote coexistence between these species in habitats with warm summers (c. 30 °C). Although coexistence may be possible in habitats with cool summers (≤ 20 °C) and freezing winters, the ability of niche separation to promote long‐term coexistence between native and introduced species may ultimately depend on their respective rates of evolution. Long‐term coexistence may not be possible if introduced species can adapt to new environmental conditions faster than native species can evolve mechanisms to reduce their harmful effects.  相似文献   

9.
Trophic interactions are important determinants of the structure and functioning of ecosystems. Because the metabolism and consumption rates of ectotherms increase sharply with temperature, there are major concerns that global warming will increase the strength of trophic interactions, destabilizing food webs, and altering ecosystem structure and function. We used geothermally warmed streams that span an 11°C temperature gradient to investigate the interplay between temperature‐driven selection on traits related to metabolism and resource acquisition, and the interaction strength between the keystone gastropod grazer, Radix balthica, and a common algal resource. Populations from a warm stream (~28°C) had higher maximal metabolic rates and optimal temperatures than their counterparts from a cold stream (~17°C). We found that metabolic rates of the population originating from the warmer stream were higher across all measurement temperatures. A reciprocal transplant experiment demonstrated that the interaction strengths between the grazer and its algal resource were highest for both populations when transplanted into the warm stream. In line with the thermal dependence of respiration, interaction strengths involving grazers from the warm stream were always higher than those with grazers from the cold stream. These results imply that increases in metabolism and resource consumption mediated by the direct, thermodynamic effects of higher temperatures on physiological rates are not mitigated by metabolic compensation in the long term, and suggest that warming could increase the strength of algal–grazer interactions with likely knock‐on effects for the biodiversity and productivity of aquatic ecosystems.  相似文献   

10.
Psychro-tolerant nematophagous fungi from the maritime Antarctic   总被引:1,自引:0,他引:1  
N. F. Gray 《Plant and Soil》1982,64(3):431-435
Summary The present investigation examines the comparative growth rates, at various temperatures between 4 and 30°C, of two nematophagous fungiMonacrosporium ellipsosporum (Preuss), (Grove), Cooke and Dickinson andM. cionapagum (Drechsler), (Subramanian), Cooke and Dickinson, both isolated from the Antarctic and from Britain. No psychrophilic species were found although the results clearly show that both the Antarctic isolates were psychro-tolerant, displaying lower minimum, optimum and maximum temperatures for growth than the British isolates. A modified form ofM. ellipsosporum isolated from the Antarctic grew only between 4 and 15°C, indicating it to be much better adapted to such cold habitats than the other isolates examined.  相似文献   

11.
In conjunction with a proposed algal cultivation scheme utilizing thermal effluent, twelve Fischerella strains were tested for tolerance to temperatures above and below their growth range. Exposure to 65 °C or 70 °C for 30 min caused bleaching and death of most or all cells. Effects of 60 °C exposure for periods of up to 2 h ranged from undetectable to severe for the various strains. Chlorophyll a content typically decreased 21–22% immediately following 60 °C or 65 °C (1 h) exposure. However, the 60 °C-shocked cultures regained normal Chl a content after 24 h at 45 °C, whereas Chl a in 65 °C-shocked cultures immediately lost visible autofluorescence and was later degraded. Exposure to 15 °C virtually stopped growth of all strains during a 48 h exposure period. Most strains grew as rapidly as 45 °C controls when restored to 45 °C, while a few strains recovered more slowly. Comparison with dark-incubated controls indicated that photooxidative damage did not occur during cold shock. Certain strains exhibited relatively rapid recovery from both heat and cold exposure, thus meeting the temperature tolerance criteria for the proposed algal cultivation process.  相似文献   

12.
Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4x10(5) CFU cm-2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (>or=92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.  相似文献   

13.

The freshwater ultraoligotrophic Lake Labynkyr is located near the Pole of Cold in the northern hemisphere (Yakutia, Russia). The lake is covered by ice during 240 days a year. We undertook several expeditions to the lake during the ice and open water periods for sampling ice fouling, plankton and periphyton that were then analyzed by means of scanning electron microscopy. As a result, we identified a high biodiversity of diatoms—123 species and intraspecific taxa from 53 genera, among them 3 species were new for Russia and 26 taxa were new for the algal flora of Yakutia. The oligo- and xenosaprobionts and their variations dominate—71 taxa. 18 Species were evaluated as tolerant to cold oligotrophic waters, 12 occurred on the ice bottom, and 62 in the water column under ice (0–25 m). 104 taxa were found during the open water period, 70 taxa were identified in the periphyton. We showed the diatom flora of Lake Labynkyr to be unique compared with other lakes of Yakutia and to share taxa with the diatom flora of Lake Baikal. The diatoms being indicators of the global climate changes and ecological status of lakes, our data can be used as an evidence of such changes as well as to be useful studies of biogeography and history of formation of flora in Arctic and Subarctic waters.

  相似文献   

14.
A critical challenge for ecologists is to understand the functional significance of habitat heterogeneity and connectivity for mobile animals. Here, we explore how a thermo-regulating fish responds to annual variation in the spatial patterning of thermal and trophic resources. In a third-order stream in coastal Alaska, juvenile coho salmon forage on sockeye salmon eggs at night in cold water and then move to warmer water to increase their digestive capacity. We mapped the spatial distributions of water temperature, juvenile coho salmon, and spawning sockeye salmon across a 5-year period during which summer discharge varied by greater than fivefold. In low flow years, warm water (9–12°C) was only available in thalweg (that is, main-channel) habitat at least approximately 400 m upstream of the cooler habitat (3–7°C) where sockeye salmon spawned. In high flow years, the entire stream thalweg was isothermal at 7–8°C, but inundated off-channel areas generated warm habitats (9–12°C) laterally adjacent to the downstream regions where sockeye salmon spawned. The daytime spatial distribution of juvenile coho salmon shifted from headwater thalweg habitats in low flow years, to downstream off-channel habitats in high flow years. In all years, the majority of juvenile coho salmon sampled during the daytime were found in warm habitat units without sockeye salmon present, yet they exhibited diet contents comprised virtually entirely of sockeye salmon eggs. Thus, thermoregulatory movements by coho salmon were able to track an annually shifting mosaic of water temperature. Our results demonstrate how the spatial habitat heterogeneity and connectivity of intact floodplains can in turn buffer aquatic organisms from high levels of temporal variation in habitat conditions and resource abundance.  相似文献   

15.
The adult tenebrionid beetle Upis ceramboides overwinters in the northern taiga forests of North America in a hibernaculum typically just beneath loose tree bark above the snowline. The beetles may be exposed to temperatures as low as ?55°C, which is approximately the lower limit of cold tolerance found in specimens collected in mid-winter. Supercooling points average ?6.3°C throughout the year and, contrary to expectation, show no seasonal variation in spite of major alterations in haemolymph composition and freezing tolerance. Summer beetles are incapable of withstanding temperatures below the supercooling point but freezing tolerance increases during the fall (September–November) and the lower lethal temperature (LLT) is maintained at ca. ?55°C until March, after which it gradually rises to the summer level of ?6°C. Changes in freezing tolerance are closely associated with seasonal alterations in the polyhydric alcohols sorbitol and threitol. Neither polyol is present in measureable amount during summer; sorbitol accumulates to an average haemolymph concentration of 0.44 M/l in winter and threitol reaches 0.25 M/l. Summer beetles contain about 14% more water than beetles collected during the other seasons. Upis ceramboides thus undergoes unique seasonal changes in physical and chemical characteristics that enable it to tolerate severe, prolonged subfreezing temperatures.  相似文献   

16.
Closely related species with different physiological tolerances and distributions make ideal systems for documenting range shifts in response to a changing climate. Mytilus edulis, M. trossulus, and M. galloprovincialis are sibling species of marine mussels with distinct biogeographical ranges that are correlated with sea surface temperatures. We determined the scope for growth of these three species at a range of temperatures to determine if energetics could predict their distributions. Scope for growth (SFG) represents energy available for growth and/or reproduction above that necessary for maintenance requirements. The SFG of M. galloprovincialis, the species known to inhabit the warmest habitats, was shifted towards warmer temperatures compared to the other two species, remaining positive until nearly 30 °C. M. edulis, a cold-temperate species, maintained a positive SFG up to 23 °C. M. trossulus, a boreal species, generally was not able to maintain a positive SFG above 17 °C. The warm end of each species’ range correlated strongly with the point at which that species’ SFG became negative in summer and fall. Energetics at cold temperatures did not predict the cold end of the species’ ranges, as there was no clear SFG advantage to explain the dominance of M. trossulus in cold habitats. As sea surface temperatures continue to warm with climate change, the energetics of these three species provide a basis for developing mechanistic models predicting future distribution and productivity changes in mussel populations.  相似文献   

17.
Fifty-seven snow-bacteria strains were isolated from the snow of the Zadang and Mengdagangri Glaciers located in the central and southern part of the Tibetan Plateau, respectively. 16S rRNA gene sequence analysis showed that strains isolated from the Zadang Glacier belonged to the Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, and were dominated by the Firmicutes. Strains from the Mengdagangri Glacier belonged to the Actinobacteria, Alphaproteobacteria and Gammaproteobacteria, and were dominated by the Actinobacteria. Sixty-one percent of the isolates were colored with pigment. Sixty-nine percent of isolates from the Zadang Glacier were psychrotolerants, and there were no psychrophiles. We compared the growth-temperature range of 26 snow-bacteria strains to their closest mesophilic type strains and found that 46% of them had an optimum growth-temperature at or lower than 20°C, and 65% were all able to grow at 0°C. However, only 5.3% of mesophilic strains had optimum growth-temperatures at or lower than 20°C, and 9% could grow at 0°C. Snow-bacteria shift their growth-temperature downward; and doing this, in terms of the minimum and optimum temperatures for growth, might be an important strategy for them to adapt to low temperature after they have been deposited on the glacier. Our results suggested that, in order to adapt from mesophilic environments to a cold habitat, snow-bacteria widen their temperature range for growth, convert from mesophiles to psychrotolerants, but not to psychrophiles. In addition, eight isolates formed pigmented colonies, while their mesophilic counterparts were achromogenic. This helped us to confirm through comparative analysis that pigmented microorganisms were more abundant in high-altitude glaciers than in mesophilic environments.  相似文献   

18.
Five strains of methanogenic archaea (MT, MS, MM, MSP, ZB) were isolated from permanently and periodically cold terrestrial habitats. Physiological and morphological studies, as well as phylogenetic analyses of the new isolates were performed. Based on sequences of the 16S rRNA and methyl-coenzyme M reductase a-subunit (mcrA) genes all new isolates are closely related to known mesophilic and psychrotolerant methanogens. Both, phylogenetic analyses and phenotypic properties allow to classify strains MT, MS, and MM as members of the genus Methanosarcina. Strain MT is a new ecotype of Methanosarcina mazei, whereas strains MM and MS are very similar to each other and can be assigned to the recently described psychrotolerant species Methanosarcina lacustris. The hydrogenotrophic strain MSP is a new ecotype of the genus Methanocorpusculum. The obligately methylotrophic strain ZB is closely related to Methanomethylovorans hollandica and can be classified as new ecotype of this species. All new isolates, including the strains from permanently cold environments, are not true psychrophiles according to their growth temperature characteristics. In spite of the ability of all isolates to grow at temperatures as low as 1-5 degrees C, all of them have their growth optima in the range of moderate temperatures (25-35 degrees C). Thus, they can be regarded as psychrotolerant organisms. Psychrotolerant methanogens are thought to play an important role in methane production in both, habitats under seasonal temperature variations or from permanently cold areas.  相似文献   

19.
About one hundred genera with more than 300 species have been identified in water samples, net haul material, periphyton samples from artificial substrate, and benthos and sediment samples collected during 1969–1972. More than 40 taxa of lower rank (subspecies, varieties, forms) were recorded. The most prominent algal groups were diatoms with 138 taxa, and green algae with 122 taxa of which the majority was desmids. The material from the epipelic and epilithic communities in the lake is very scarce, while the list of plankton species is relatively complete, with the exception that a large number of small flagellates could not be identified to species level. The taxa which were identified, are presented in a list with additional notes on occurrence.  相似文献   

20.
The Early to Middle Miocene fossil locality Sandelzhausen has yielded 48 species of ectothermic vertebrates and thus represents one of the most diverse ectotherm faunas of Miocene age. Thirty-five taxa of fishes, amphibians and reptiles, including three new species: Pelobates fahlbuschi nov. sp. (Pelobatidae, the most abundant vertebrate), Tropidophorus bavaricus nov. sp. (Lygosominae) and Bavaricordylus molassicus nov. sp. (Cordylidae), are described. Three additional species are new, but are not named yet: Ranidae indet. nov. gen. et sp., Anguidae gen. indet. sp. nov. and Palaeoblanus sp. nov. (Amphisbaenidae). In order to reconstruct the palaeoenvironment and past hydrologic conditions, a new methodology (the tooth replacement method, TRM) is introduced, which allows for the detection of autochthonous components within freshwater fish taphocoenose. TRM is tested on 45 localities from the Upper Freshwater Molasse and gives reasonable results in agreement with other analytical approaches. It is therefore viewed as a reliable method to distinguish perennial from seasonal water conditions at the Sandelzhausen locality. Using the TRM it was demonstrated that the palaeohydrology of Sandelzhausen is characterized by a change from temporary water to permanent water conditions. During the period of temporary water conditions (units B to D1, lower part) the ecosystem was driven by seasonal inundations, and the remaining riparian pools have yielded no autochthonous fish population, but acted as spawning places for amphibians (amphibian pool). A mostly open habitat in the close vicinity, with sandy and non-groundwater-affected soils during the dry season, is suggested based on the absolute dominance of the spadefoot Pelobates fahlbuschi nov. sp. This ecosystem changed up-section (late part of unit D1 and during D2 and E) due to the establishment of permanent water conditions of riparian pond type, preserving an autochthonous Palaeocarassius/Channa fish population (fish pond). The reconstructed precipitation values suggest that the observed change in hydrologic conditions was probably driven by climate. The lower part of the section gives semi-arid/sub-humid values, with 571 mm mean annual precipitation (MAP), whereas the upper part yields sub-humid/humid values of 847 mm MAP. The increase in precipitation by about 280 mm was perhaps caused by a less seasonal precipitation regime with concomitant higher regional groundwater tables during units D2 and E. Based on the occurrence of several thermophilous reptile species, and in agreement with palaeobotanical and oxygen isotope data, the climate of Sandelzhausen is interpreted as subtropical with mean annual temperatures from 18°C to 20.8°C, mean cold month temperatures from 12.6°C to 13.3°C and mean warm month temperatures from 25.1°C to 28.1°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号