首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading causes of blindness worldwide. Genome-wide association studies have successfully identified several common variants associated with glaucoma; however, most of these variants only explain a small proportion of the genetic risk. Apart from the standard approach to identify main effects of variants across the genome, it is believed that gene-gene interactions can help elucidate part of the missing heritability by allowing for the test of interactions between genetic variants to mimic the complex nature of biology. To explain the etiology of glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma case-control samples obtained from electronic medical records (EMR) to establish the utility of EMR data in detecting non-spurious and relevant associations; this analysis was aimed at confirming already known associations with glaucoma and validating the EMR derived glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several known associations in POAG. We then performed an interaction analysis for variants found to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and observed interesting findings in the electronic MEdical Records and GEnomics Network (eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data (Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interactions (p-value <0.001) among the top 17 gene-gene models identified in the discovery phase. Variants from gene-gene interaction analysis that we found to be associated with POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is explained by the SNPs in genes that are replicated from previous GWAS studies (which was only 2.1% variance explained in eMERGE dataset); in the NEIGHBOR dataset, adding replicated SNPs from gene-gene interaction analysis explain 3.4% of total variance whereas GWAS SNPs alone explain only 2.8% of variance. Exploring gene-gene interactions may provide additional insights into many complex traits when explored in properly designed and powered association studies.  相似文献   

2.
It is widely agreed that complex diseases are typically caused by the joint effects of multiple instead of a single genetic variation. These genetic variations may show stronger effects when considered together than when considered individually, a phenomenon known as epistasis or multilocus interaction. In this work, we explore the applicability of information interaction to discover pairwise epistatic effects related with complex diseases. We start by showing that traditional approaches such as classification methods or greedy feature selection methods (such as the Fleuret method) do not perform well on this problem. We then compare our information interaction method with BEAM and SNPHarvester in artificial datasets simulating epistatic interactions and show that our method is more powerful to detect pairwise epistatic interactions than its competitors. We show results of the application of information interaction method to the WTCCC breast cancer dataset. Our results are validated using permutation tests. We were able to find 89 statistically significant pairwise interactions with a p-value lower than . Even though many recent algorithms have been designed to find epistasis with low marginals, we observed that all (except one) of the SNPs involved in statistically significant interactions have moderate or high marginals. We also report that the interactions found in this work were not present in gene-gene interaction network STRING.  相似文献   

3.
It has been argued that the missing heritability in common diseases may be in part due to rare variants and gene-gene effects. Haplotype analyses provide more power for rare variants and joint analyses across genes can address multi-gene effects. Currently, methods are lacking to perform joint multi-locus association analyses across more than one gene/region. Here, we present a haplotype-mining gene-gene analysis method, which considers multi-locus data for two genes/regions simultaneously. This approach extends our single region haplotype-mining algorithm, hapConstructor, to two genes/regions. It allows construction of multi-locus SNP sets at both genes and tests joint gene-gene effects and interactions between single variants or haplotype combinations. A Monte Carlo framework is used to provide statistical significance assessment of the joint and interaction statistics, thus the method can also be used with related individuals. This tool provides a flexible data-mining approach to identifying gene-gene effects that otherwise is currently unavailable. AVAILABILITY: http://bioinformatics.med.utah.edu/Genie/hapConstructor.html.  相似文献   

4.
Yu Z 《Human heredity》2011,71(3):171-179
The case-parents design has been widely used to detect genetic associations as it can prevent spurious association that could occur in population-based designs. When examining the effect of an individual genetic locus on a disease, logistic regressions developed by conditioning on parental genotypes provide complete protection from spurious association caused by population stratification. However, when testing gene-gene interactions, it is unknown whether conditional logistic regressions are still robust. Here we evaluate the robustness and efficiency of several gene-gene interaction tests that are derived from conditional logistic regressions. We found that in the presence of SNP genotype correlation due to population stratification or linkage disequilibrium, tests with incorrectly specified main-genetic-effect models can lead to inflated type I error rates. We also found that a test with fully flexible main genetic effects always maintains correct test size and its robustness can be achieved with negligible sacrifice of its power. When testing gene-gene interactions is the focus, the test allowing fully flexible main effects is recommended to be used.  相似文献   

5.
Multi-marker approaches have received a lot of attention recently in genome wide association studies and can enhance power to detect new associations under certain conditions. Gene-, gene-set- and pathway-based association tests are increasingly being viewed as useful supplements to the more widely used single marker association analysis which have successfully uncovered numerous disease variants. A major drawback of single-marker based methods is that they do not look at the joint effects of multiple genetic variants which individually may have weak or moderate signals. Here, we describe novel tests for multi-marker association analyses that are based on phenotype predictions obtained from machine learning algorithms. Instead of assuming a linear or logistic regression model, we propose the use of ensembles of diverse machine learning algorithms for prediction. We show that phenotype predictions obtained from ensemble learning algorithms provide a new framework for multi-marker association analysis. They can be used for constructing tests for the joint association of multiple variants, adjusting for covariates and testing for the presence of interactions. To demonstrate the power and utility of this new approach, we first apply our method to simulated SNP datasets. We show that the proposed method has the correct Type-1 error rates and can be considerably more powerful than alternative approaches in some situations. Then, we apply our method to previously studied asthma-related genes in 2 independent asthma cohorts to conduct association tests.  相似文献   

6.
全基因组基因-基因相互作用研究现状   总被引:2,自引:0,他引:2  
沈佳薇  胡晓菡  师咏勇 《遗传》2011,33(8):820-828
复杂疾病目前正在全球范围流行, 极大地影响人类的健康。研究发现, 复杂疾病的性状受到多个位点的相互作用影响。目前的全基因组关联分析(Genome-wide association study, GWAS)仅仅解析单个SNP位点对疾病易感性的贡献, 单纯依靠这一种策略并不能在寻找复杂疾病的病因上得到根本性的突破。基因-基因相互作用可能是复杂疾病致病的主要因素之一。针对这一点, 科学家已经提出了一些检验基因相互作用的算法, 包括惩罚logistic回归模型、多因子降维(Multifactor dimensional reduction)、集合关联法(Set-association approach)、贝叶斯网络(Bayesian networks)、随机森林法等。文章首先对目前这些方法做了综述, 并指出了其中的不足, 包括计算复杂度太高、假设驱动、数据会过度拟合、对低维数据不敏感等, 进而简述了一种由笔者所在实验室开发的基于GPU的研究基因相互作用的算法, 该算法复杂度低, 不需要任何假设, 没有边际效应, 有很好的稳定性, 速度快, 适用于进行全基因组范围内的基因-基因相互作用计算。  相似文献   

7.
Moore JH 《Human heredity》2003,56(1-3):73-82
There is increasing awareness that epistasis or gene-gene interaction plays a role in susceptibility to common human diseases. In this paper, we formulate a working hypothesis that epistasis is a ubiquitous component of the genetic architecture of common human diseases and that complex interactions are more important than the independent main effects of any one susceptibility gene. This working hypothesis is based on several bodies of evidence. First, the idea that epistasis is important is not new. In fact, the recognition that deviations from Mendelian ratios are due to interactions between genes has been around for nearly 100 years. Second, the ubiquity of biomolecular interactions in gene regulation and biochemical and metabolic systems suggest that relationship between DNA sequence variations and clinical endpoints is likely to involve gene-gene interactions. Third, positive results from studies of single polymorphisms typically do not replicate across independent samples. This is true for both linkage and association studies. Fourth, gene-gene interactions are commonly found when properly investigated. We review each of these points and then review an analytical strategy called multifactor dimensionality reduction for detecting epistasis. We end with ideas of how hypotheses about biological epistasis can be generated from statistical evidence using biochemical systems models. If this working hypothesis is true, it suggests that we need a research strategy for identifying common disease susceptibility genes that embraces, rather than ignores, the complexity of the genotype to phenotype relationship.  相似文献   

8.
Chung RH  Chen YE 《PloS one》2012,7(5):e36662
Pathway analysis provides a powerful approach for identifying the joint effect of genes grouped into biologically-based pathways on disease. Pathway analysis is also an attractive approach for a secondary analysis of genome-wide association study (GWAS) data that may still yield new results from these valuable datasets. Most of the current pathway analysis methods focused on testing the cumulative main effects of genes in a pathway. However, for complex diseases, gene-gene interactions are expected to play a critical role in disease etiology. We extended a random forest-based method for pathway analysis by incorporating a two-stage design. We used simulations to verify that the proposed method has the correct type I error rates. We also used simulations to show that the method is more powerful than the original random forest-based pathway approach and the set-based test implemented in PLINK in the presence of gene-gene interactions. Finally, we applied the method to a breast cancer GWAS dataset and a lung cancer GWAS dataset and interesting pathways were identified that have implications for breast and lung cancers.  相似文献   

9.
This paper aims to describe the benefits of using data recoding methods for the analysis of genetic interactions. By changing the representation of the input data it is possible to model non-additive genetic effects in association analysis software, which has been primarily designed to analyse only additive genetic effects. Similar treatment can be applied also for general-purpose statistical search algorithms available in general statistical packages. Data recoding is illustrated for several interaction models using hypothetical examples and by presenting gene-gene interaction analysis in a real cystic fibrosis dataset using the BAMA software.  相似文献   

10.
Lee JE  Choi JH  Lee JH  Lee MG 《Mutation research》2005,573(1-2):195-204
Haplotype-based analysis using high-density single nucleotide polymorphism (SNP) markers have gained increasing attention in evaluating candidate genes in various clinical situations. For example, haplotype information is useful for predicting the severity and prognosis of certain genetic disorders. The intragenic cis-interactions between the common polymorphisms and the pathogenic mutations of prion protein (PRNP) and cystic fibrosis transmembrane conductance regulator (CFTR) genes greatly influence the phenotypes and the disease penetrance of hereditary Creutzfeldt-Jakob disease and cystic fibrosis. Merits of haplotype study are more evident in the fine mapping of complex diseases and in identifying genetic variations that influence individual's response to drugs. Knowledge-based approaches and/or linkage analyses using SNP tagged haplotypes are effective tools in detecting genetic associations. For example, haplotype studies in the inflammatory bowel disease susceptibility loci revealed diverse cis and trans gene-gene interactions, which can affect the clinical outcomes. Although currently, we have very limited knowledge on haplotype-phenotypic characterizations of most genes, these examples demonstrate that increased understanding of the clinically relevant haplotypes will provide better results in the diagnosis and possibly in the treatment of both monogenic and polygenic diseases.  相似文献   

11.
Despite the current progress in high-throughput, dense genome scans, a major portion of complex traits' heritability still remains unexplained, a phenomenon commonly termed "missing heritability." The negligence of analytical approaches accounting for gene-gene interaction effects, such as statistical epistasis, is probably central to this phenomenon. Here we performed a comprehensive two-way SNP interaction analysis of human episodic memory, which is a heritable complex trait, and focused on 120 genes known to show differential, memory-related expression patterns in rat hippocampus. Functional magnetic resonance imaging was also used to capture genotype-dependent differences in memory-related brain activity. A significant, episodic memory-related interaction between two markers located in potassium channel genes (KCNB2 and KCNH5) was observed (P(nominal combined)=0.000001). The epistatic interaction was robust, as it was significant in a screening (P(nominal)=0.0000012) and in a replication sample (P(nominal)=0.01). Finally, we found genotype-dependent activity differences in the parahippocampal gyrus (P(nominal)=0.001) supporting the behavioral genetics finding. Our results demonstrate the importance of analytical approaches that go beyond single marker statistics of complex traits.  相似文献   

12.
Gene-gene interactions may play an important role in the genetics of a complex disease. Detection and characterization of gene-gene interactions is a challenging issue that has stimulated the development of various statistical methods to address it. In this study, we introduce a method to measure gene interactions using entropy-based statistics from a contingency table of trait and genotype combinations. We also developed an exploration procedure by using graphs. We propose a standardized relative information gain (RIG) measure to evaluate the interactions between single nucleotide polymorphism (SNP) combinations. To identify the k th order interactions, contingency tables of trait and genotype combinations of k SNPs are constructed, with which RIGs are calculated. The RIGs are standardized using the mean and standard deviation from the permuted datasets. SNP combinations yielding high standardized RIG are chosen for gene-gene interactions. Detection of high-order interactions and comparison of interaction strengths between different orders are made possible by using standardized RIG. We have applied the proposed standardized entropy-based method to two types of data sets from a simulation study and a real genetic association study. We have compared our method and the multifactor dimensionality reduction (MDR) method through power analysis of eight different genetic models with varying penetrance rates, number of SNPs, and sample sizes. Our method shows successful identification of genetic associations and gene-gene interactions both in simulation and real genetic data. Simulation results suggest that the proposed entropy-based method is better able to detect high-order interactions and is superior to the MDR method in most cases. The proposed method is well suited for detecting interactions without main effects as well as for models including main effects.  相似文献   

13.
14.
ABSTRACT: BACKGROUND: Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs) is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS) however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. RESULTS: We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS) [17] for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units) technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case-Control Consortium) data. CONCLUSIONS: Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.  相似文献   

15.
The human genome encodes a limited number of genes yet contributes to individual differences in a vast array of heritable traits. A possible explanation for the capacity our genome to generate this virtually unlimited range of phenotypic variation in complex traits is to assume functional interactions between genes. Therefore we searched two mammalian genomes to identify potential epistatic interactions by looking for co-adapted genes marked by excess two-locus genetic differentiation between populations/lineages using publicly available SNP genotype data. The practical motivation for this effort is to reduce the number of pair-wise tests that need to be performed in genome-wide association studies aimed at detecting GxG interactions, by focusing on pairs predicted to be more likely to jointly affect variation in complex traits. Hence, this approach generates a list of candidate interactions that can be empirically tested. In both the mouse and human data we observed two-locus genetic differentiation in excess of what can be expected from chance alone based on simulations. In an attempt to validate our hypothesis that pairs of genes showing excess genetic divergence represent potential functional interactions, we selected a small set of gene combinations postulated to be interacting based on our analyses and looked for a combined effect of the selected genes on variation in complex traits in both mice and man. In both cases the individual effect of the genes were not significant, instead we observed marginally significant interaction effects. These results show that genome wide searches for gene-gene interactions based on population genetic data are feasible and can generate interesting candidate gene pairs to be further tested for their contribution to phenotypic variation in complex traits.  相似文献   

16.
MOTIVATION: Polymorphisms in human genes are being described in remarkable numbers. Determining which polymorphisms and which environmental factors are associated with common, complex diseases has become a daunting task. This is partly because the effect of any single genetic variation will likely be dependent on other genetic variations (gene-gene interaction or epistasis) and environmental factors (gene-environment interaction). Detecting and characterizing interactions among multiple factors is both a statistical and a computational challenge. To address this problem, we have developed a multifactor dimensionality reduction (MDR) method for collapsing high-dimensional genetic data into a single dimension thus permitting interactions to be detected in relatively small sample sizes. In this paper, we describe the MDR approach and an MDR software package. RESULTS: We developed a program that integrates MDR with a cross-validation strategy for estimating the classification and prediction error of multifactor models. The software can be used to analyze interactions among 2-15 genetic and/or environmental factors. The dataset may contain up to 500 total variables and a maximum of 4000 study subjects. AVAILABILITY: Information on obtaining the executable code, example data, example analysis, and documentation is available upon request. SUPPLEMENTARY INFORMATION: All supplementary information can be found at http://phg.mc.vanderbilt.edu/Software/MDR.  相似文献   

17.
There has been increased interest in discovering combinations of single-nucleotide polymorphisms (SNPs) that are strongly associated with a phenotype even if each SNP has little individual effect. Efficient approaches have been proposed for searching two-locus combinations from genome-wide datasets. However, for high-order combinations, existing methods either adopt a brute-force search which only handles a small number of SNPs (up to few hundreds), or use heuristic search that may miss informative combinations. In addition, existing approaches lack statistical power because of the use of statistics with high degrees-of-freedom and the huge number of hypotheses tested during combinatorial search. Due to these challenges, functional interactions in high-order combinations have not been systematically explored. We leverage discriminative-pattern-mining algorithms from the data-mining community to search for high-order combinations in case-control datasets. The substantially improved efficiency and scalability demonstrated on synthetic and real datasets with several thousands of SNPs allows the study of several important mathematical and statistical properties of SNP combinations with order as high as eleven. We further explore functional interactions in high-order combinations and reveal a general connection between the increase in discriminative power of a combination over its subsets and the functional coherence among the genes comprising the combination, supported by multiple datasets. Finally, we study several significant high-order combinations discovered from a lung-cancer dataset and a kidney-transplant-rejection dataset in detail to provide novel insights on the complex diseases. Interestingly, many of these associations involve combinations of common variations that occur in small fractions of population. Thus, our approach is an alternative methodology for exploring the genetics of rare diseases for which the current focus is on individually rare variations.  相似文献   

18.
Despite the growing consensus on the importance of testing gene-gene interactions in genetic studies of complex diseases, the effect of gene-gene interactions has often been defined as a deviance from genetic additive effects, which is essentially treated as a residual term in genetic analysis and leads to low power in detecting the presence of interacting effects. To what extent the definition of gene-gene interaction at population level reflects the genes' biochemical or physiological interaction remains a mystery. In this article, we introduce a novel definition and a new measure of gene-gene interaction between two unlinked loci (or genes). We developed a general theory for studying linkage disequilibrium (LD) patterns in disease population under two-locus disease models. The properties of using the LD measure in a disease population as a function of the measure of gene-gene interaction between two unlinked loci were also investigated. We examined how interaction between two loci creates LD in a disease population and showed that the mathematical formulation of the new definition for gene-gene interaction between two loci was similar to that of the LD between two loci. This finding motived us to develop an LD-based statistic to detect gene-gene interaction between two unlinked loci. The null distribution and type I error rates of the LD-based statistic for testing gene-gene interaction were validated using extensive simulation studies. We found that the new test statistic was more powerful than the traditional logistic regression under three two-locus disease models and demonstrated that the power of the test statistic depends on the measure of gene-gene interaction. We also investigated the impact of using tagging SNPs for testing interaction on the power to detect interaction between two unlinked loci. Finally, to evaluate the performance of our new method, we applied the LD-based statistic to two published data sets. Our results showed that the P values of the LD-based statistic were smaller than those obtained by other approaches, including logistic regression models.  相似文献   

19.
Currently, the genetic variants identified by genome wide association study (GWAS) generally only account for a small proportion of the total heritability for complex disease. One crucial reason is the underutilization of gene-gene joint effects commonly encountered in GWAS, which includes their main effects and co-association. However, gene-gene co-association is often customarily put into the framework of gene-gene interaction vaguely. From the causal graph perspective, we elucidate in detail the concept and rationality of gene-gene co-association as well as its relationship with traditional gene-gene interaction, and propose two Fisher r-to-z transformation-based simple statistics to detect it. Three series of simulations further highlight that gene-gene co-association refers to the extent to which the joint effects of two genes differs from the main effects, not only due to the traditional interaction under the nearly independent condition but the correlation between two genes. The proposed statistics are more powerful than logistic regression under various situations, cannot be affected by linkage disequilibrium and can have acceptable false positive rate as long as strictly following the reasonable GWAS data analysis roadmap. Furthermore, an application to gene pathway analysis associated with leprosy confirms in practice that our proposed gene-gene co-association concepts as well as the correspondingly proposed statistics are strongly in line with reality.  相似文献   

20.
Many association studies analyze the genotype frequencies of case and control data to predict susceptibility to diseases and cancers. Without providing the raw data for genotypes, many association studies cannot be interpreted fully. Often, the interactions of the single nucleotide polymorphisms (SNPs) are not addressed and this limits the potential of such studies. To solve these problems, we propose a novel computational method with source codes to generate a stimulated genotype dataset based on published SNP genotype frequencies. In this study we evaluate the combined effect of 26 SNP combinations related to eight published growth factor-related genes involved in carcinogenesis pathways of breast cancer. The genetic algorithm (GA) was chosen to provide simultaneous analysis of multiple independent SNPs. The GA can perform feature selection from different SNP combinations via their corresponding genotype (called the SNP barcode), and the approach is able to provide a specific SNP barcode with an optimized fitness value effectively. The best SNP barcode with the maximal occurrence difference between groups for the control and breast cancer, together with an odds ratio analysis, is used to evaluate breast cancer susceptibility. When they are compared to their corresponding non-SNP barcodes, the estimated odds ratios for breast cancer are less than 1 (about 0.85 and 0.87; confidence interval: 0.7473~0.9585, p?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号