首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
? Potato (Solanum tuberosum) calcium-dependent protein kinase (StCDPK5) has been shown to phosphorylate the N-terminal region of plasma membrane RBOH (respiratory burst oxidase homolog) proteins, and participate in StRBOHB-mediated reactive oxygen species (ROS) burst. The constitutively active form, StCDPK5VK, provides a useful tool for gain-of-function analysis of RBOH in defense responses. ? StCDPK5- and StCDPK5VK-green fluorescent protein fusion proteins were predominantly targeted to the plasma membrane, and conditional expression of StCDPK5VK activated StRBOHA-D. The interaction was confirmed by bimolecular fluorescence complementation assay. We generated transgenic potato plants containing StCDPK5VK under the control of a pathogen-inducible promoter to investigate the role of ROS burst on defense responses to blight pathogens. ? Virulent isolates of the late blight pathogen Phytophthora infestans and the early blight pathogen Alternaria solani induced hypersensitive response-like cell death accompanied by ROS production at the infection sites of transgenic plants. Transgenic plants showed resistance to the near-obligate hemibiotrophic pathogen P.?infestans and, by contrast, increased susceptibility to the necrotrophic pathogen A.?solani. ? These results indicate that RBOH-dependent ROS contribute to basal defense against near-obligate pathogens, but have a negative role in resistance or have a positive role in expansion of disease lesions caused by necrotrophic pathogens.  相似文献   

2.
Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plant immunity. However, roles of NO and ROS in disease resistance to necrotrophic pathogens are not fully understood. We have recently demonstrated that NO plays a pivotal role in basal defense against Botrytis cinerea and the expression of the salicylic acid (SA)-responsive gene PR-1 in Nicotiana benthamiana. By contrast, ROS function negatively in resistance or positively in expansion of disease lesions during B. cinerea-N. benthamiana interaction. Here, analysis in NahG-transgenic N. benthamiana showed that SA signaling is not involved in resistance to B. cinerea in N. benthamiana. We discuss how NO and ROS participate in disease resistance to necrotrophic pathogens on the basis of recent reports.Key words: NO burst, oxidative burst, necrotrophic pathogen, salicylic acid, plant immunity, MAPKNecrotrophs are pathogens that kill host cells by means of toxic molecules and lytic enzymes, and they feed on the remains for their own growth. If the toxic molecule shows differential activity to one or a few plant species, the pathogen has a limited host range and the metabolite is referred to as a host-selective toxin (HST).1 Several well-studied necrotrophs, in particular Cochliobolus and Alternaria spp., produce HSTs required for the pathogenicity. There are also necrotrophic fungal pathogens with a broad host range, particularly those in the order of Helotiales, including Sclerotinia sclerotiorum and Botrytis cinerea.Rapid production of nitric oxide (NO) and reactive oxygen species (ROS), called NO burst and oxidative burst, respectively, is one of the earliest responses of plants to pathogen attacks. Our recent study showed that NO and oxidative bursts accompanied by activation of the mitogen-activated protein kinase (MAPK)2 are induced after inoculation with B. cinerea, and that NO plays a key role, but ROS have an opposite effect in basal defense against B. cinerea in Nicotiana benthamiana.3 NO and ROS are believed to play key roles independently or coordinately in plant innate immunity.4,5 NO signaling comprises complex processes including increases in cytosolic Ca2+ concentration, cyclic GMP (cGMP), cyclic ADP ribose and activation of protein kinases. NO also modulates protein activities directly by cysteine S-nitrosylation.6 In addition, NO appears to act as an antioxidant of ROS, because NO can react quickly with superoxide (O2) to form peroxynitrite (ONOO) and then, reduces the amount of endogenous ROS. Actually, treatment with a mammalian NO synthase inhibitor and silencing NbNOA1 decreased endogenous NO levels and increased the levels of ROS after inoculation with B. cinerea.3 The suppression of NO burst induced high susceptibility to B. cinerea, and depletion of oxidative burst by an NADPH oxidase inhibitor or silencing NbRBOHB led to reduction in disease lesions by B. cinerea,3 suggesting that the growth of B. cinerea might be determined by endogenous levels of ROS which is an important component of virulence.7 However, depletion of both NO and oxidative bursts by double silencing NbNOA1/NbRBOHB resulted in expansion of disease lesions compared with reduction of oxidative burst alone by silencing NbRBOHB.3 Similarly, our most recent study showed that silencing NbRibA which compromises production of both NO and ROS do not affect basal resistance against B. cinerea.8 These findings suggest that NO positively functions in resistance to necrotrophic pathogens in the manner other than as an antioxidant of ROS.The relationship between NO and salicylic acid (SA) has been studied.9 SA signaling-deficient mutants of Arabidopsis thaliana show high susceptibility to B. cinerea.10,11 We have suggested that reduced basal defense against B. cinerea in N. benthamiana resulting from compromised endogenous NO production may be due to depletion of SA signaling, because NbNOA1-silenced plants showed suppression of the SA-responsive gene NbPR-1 expression induced by inoculation with B. cinerea.3 To confirm the possibility, we used N. benthamiana expressing NahG that converts all SA to catechol. NahG and non-NahG (WT) leaves were inoculated with B. cinerea. NahG plants showed similar susceptibility to B. cinerea compared with WT plants (Fig. 1). We also evaluated effects of silencing NbNOA1 and NbRBOHB in NahG plants on susceptibility to B. cinerea. Like NbNOA1-silenced WT plants shown previusly,3 NbNOA1-silenced NahG leaves showed high susceptibility to B. cinerea. On the other hand, NbRBOHB-silenced NahG leaves showed marked reduction of disease lesions compared with silencing-control NahG leaves. NbNOA1/NbRBOHB-silenced NahG leaves showed expansion of disease lesions compared with NbRBOHB-silenced NahG leaves (Fig. 2). These results suggest that NO-mediated basal defense against B. cinerea is not due to SA signaling, and effects of ROS on disease lesions may not depend on SA in N. benthamiana.Open in a separate windowFigure 1Effects of NahG transgene on susceptibility to B. cinerea. NahG and non-NahG (WT) leaves were inoculated with B. cinerea conidial suspension (1 × 105 conidia/ml). (A) Inoculated leaves were photographed at 4 days postinoculation (dpi). (B) Average diameter of lesions formed on the leaves at 3 and 4 dpi. Data are means ± SD from fourteen experiments.Open in a separate windowFigure 2Effects of silencing NbNOA1 (N), NbRBOHB (B) or NbNOA1/NbRBOHB (N/B) in NahG plants on susceptibility to B. cinerea. Silenced NahG leaves were inoculated with B. cinerea conidial suspension (1 × 105 conidia/ml). (A) Inoculated leaves were photographed at 4 dpi. (B) Average diameter of lesions formed on the leaves at 3 and 4 dpi. Data are means ± SD from four experiments. Data were subjected to Student''s t-test. *p < 0.05 versus silencing-control plants (TRV). **p < 0.05 versus NbRBOHB-silenced plants.Recently, it has been reported that NO and ROS are involved in HSTs responses.1215 Victorin, an HST produced by Cochliobolus victoriae, elicits generation of NO and ROS in victorin-sensitive oat leaves.12 Cell death induced by victorin is suppressed by treatment with ROS scavengers.13 Similarly, treatment with ToxA, an HST produced by Pyrenophora triticirepentis, induces oxidative burst, and scavenging ROS compromises ToxA-inducible cell death in ToxA-sensitive wheatleaves.14,15 SA-induced MAPK, which regulates both NO and ROS production,2 is activated by AAL-toxin produced by Alternaria alternata f. sp. lycopersici in AAL-toxin-sensitive tobacco (Mizuno et al. unpublished data). These findings indicate requirement of ROS for the HST-inducible cell death and participation of NO in HST responses.In conclusion, NO and ROS appear to play a contrasting role in disease resistance to necrotrophic pathogens as shown in Figure 3. However, how NO signaling participates in defense responses against necrotrophic pathogens has yet to be elucidated. Recently, several targets of protein S-nitrosylation during hypersensitive response have been characterized in A. thaliana.16 Evidence is also accumulating for cGMP as an important component of NO-related signal transduction.17 Further investigations of NO signaling will lead to our understanding of interactions between plants and necrotrophic pathogens.Open in a separate windowFigure 3Model showing role of NO and oxidative bursts in disease resistance to necrotrophic pathogens. After recognition of necrotrophs, plants immediately provoke activation of MAPK which could regulate production of both NO and ROS,2 and then NO and oxidative bursts. NO burst plays an important role in disease resistance to necrotrophic pathogens, whereas oxidative burst has a negative role in resistance or has a positive role in expansion of disease lesions by necrotrophs.  相似文献   

3.
Asai S  Ohta K  Yoshioka H 《The Plant cell》2008,20(5):1390-1406
Nitric oxide (NO) and reactive oxygen species (ROS) act as signals in innate immunity in plants. The radical burst is induced by INF1 elicitin, produced by the oomycete pathogen Phytophthora infestans. NO ASSOCIATED1 (NOA1) and NADPH oxidase participate in the radical burst. Here, we show that mitogen-activated protein kinase (MAPK) cascades MEK2-SIPK/NTF4 and MEK1-NTF6 participate in the regulation of the radical burst. NO generation was induced by conditional activation of SIPK/NTF4, but not by NTF6, in Nicotiana benthamiana leaves. INF1- and SIPK/NTF4-mediated NO bursts were compromised by the knockdown of NOA1. However, ROS generation was induced by either SIPK/NTF4 or NTF6. INF1- and MAPK-mediated ROS generation was eliminated by silencing Respiratory Burst Oxidase Homolog B (RBOHB), an inducible form of the NADPH oxidase. INF1-induced expression of RBOHB was compromised in SIPK/NTF4/NTF6-silenced leaves. These results indicated that INF1 regulates NOA1-mediated NO and RBOHB-dependent ROS generation through MAPK cascades. NOA1 silencing induced high susceptibility to Colletotrichum orbiculare but not to P. infestans; conversely, RBOHB silencing decreased resistance to P. infestans but not to C. orbiculare. These results indicate that the effects of the radical burst on the defense response appear to be diverse in plant-pathogen interactions.  相似文献   

4.
5.
6.
Potato antimicrobial sesquiterpenoid phytoalexins lubimin and rishitin have been implicated in resistance to the late blight pathogen, Phytophthora infestans and early blight pathogen, Alternaria solani. We generated transgenic potato plants in which sesquiterpene cyclase, a key enzyme for production of lubimin and rishitin, is compromised by RNAi to investigate the role of phytoalexins in potato defence. The transgenic tubers were deficient in phytoalexins and exhibited reduced post-invasive resistance to an avirulent isolate of P. infestans, resulting in successful infection of the first attacked cells without induction of cell death. However, cell death was observed in the subsequently penetrated cells. Although we failed to detect phytoalexins and antifungal activity in the extract from wild-type leaves, post-invasive resistance to avirulent P. infestans was reduced in transgenic leaves. On the other hand, A. solani frequently penetrated epidermal cells of transgenic leaves and caused severe disease symptoms presumably from a deficiency in unidentified antifungal compounds. The contribution of antimicrobial components to resistance to penetration and later colonization may vary depending on the pathogen species, suggesting that sesquiterpene cyclase-mediated compounds participate in pre-invasive resistance to necrotrophic pathogen A. solani and post-invasive resistance to hemibiotrophic pathogen P. infestans.  相似文献   

7.
Bacteria and plant derived volatile organic compounds have been reported as the chemical triggers that elicit induced resistance in plants. Previously, volatile organic compounds (VOCs), including acetoin and 2,3-butanediol, were found to be emitted from plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis GB03, which had been shown to elicit ISR and plant growth promotion. More recently, we reported data that stronger induced resistance could be elicited against Pseudomonas syringae pv maculicola ES4326 in plants exposed to C13 VOC from another PGPR Paenibacillus polymyxa E681 compared with that of strain GB03. Here, we assessed whether another long hydrocarbon C16 hexadecane (HD) conferred protection to Arabidopsis from infection of a biotrophic pathogen, P. syringae pv maculicola and a necrotrophic pathogen, Pectobacterium carotovorum subsp carotovorum. Collectively, long-chain VOCs can be linked to a plant resistance activator for protecting plants against both biotrophic and necrotrophic pathogens at the same time.  相似文献   

8.
The most significant threat to potato production worldwide is the late blight disease, which is caused by the oomycete pathogen Phytophthora infestans. Based on previous cDNA microarrays and cDNA-amplified fragment length polymorphism analysis, 63 candidate genes that are expected to contribute to developing a durable resistance to late blight were selected for further functional analysis. We performed virus-induced gene silencing (VIGS) to these candidate genes on both Nicotiana benthamiana and potato, subsequently inoculated detached leaves and assessed the resistance level. Ten genes decreased the resistance to P. infestans after VIGS treatment. Among those, a lipoxygenase (LOX; EC 1.13.11.12) and a suberization-associated anionic peroxidase affected the resistance in both N. benthamiana and potato. Our results identify genes that may play a role in quantitative resistance mechanisms to late blight.  相似文献   

9.
Plants rely on the innate immune system to defend themselves from pathogen attacks. Reactive oxygen species (ROS) and nitric oxide (NO) play key roles in the activation of disease resistance mechanisms in plants. The evolutionarily conserved mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes and have been implicated in the plant innate immunity. There have been many disputations about the relationship between the radicals (ROS and NO) and MAPK cascades. Recently, we found that MAPK cascades participate in the regulation of the radical burst. Here, we discuss the regulatory mechanisms of the oxidative and NO bursts in response to pathogen attacks, and crosstalk between MAPK signaling and the radical burst.Key words: oxidative burst, MAPK, NADPH oxidase, NO burst, plant immunity  相似文献   

10.
11.
Changes in antioxidant systems in soybean [Glycine max (L.) Merr., Fabaceae] genotypes infected with Sclerotinia sclerotiorum were studied 12, 24, 48 and 72 h after inoculation. Generation of superoxide and hydroxyl radicals was evaluated together with the production of malonyldialdehyde, main end product of lipid peroxidation. Several enzymatic and non-enzymatic parameters were monitored as well, such as the activity of antioxidant enzymes superoxide dismutase and pyrogallol and guaiacol peroxidases, reduced glutathione, soluble proteins and total carotenoids content. Results showed that genotypes expressed oxidative burst as well as different antioxidant systems in response to biotic stress caused by pathogen invasion. It has been confirmed that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect soybean plants against infection by the necrotrophic pathogen such as S. sclerotiorum. Still, some genotypes showed distinctive and combined activity of several biochemical parameters which may point to further directions in exploring host-pathogen relations and lead to selection and production of new genotypes with higher levels of tolerance  相似文献   

12.
Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success.  相似文献   

13.
Reactive oxygen species (ROS) are involved in the pathogen-host interactions, and play a Janus-faced role in the resistance and susceptibility of plants to biotrophic and necrotrophic pathogens. The ascomycete fungus Fusarium graminearum causes hazardous wheat Fusarium head blight worldwide. Deletion of the putative secreted catalase-peroxidase gene in F. graminearum, KatG2, reduced the virulence in wheat spike infection. However, it remains unclear when and where KatG2 scavenges ROS during the invasion of wheat. In this study, we delineate the change in ROS levels in the transition of the infection phase under microscopic observation. Correspondingly, the pathogen switches its strategy of infection with temporal and spatial regulation of KatG2 to counteract oxidative stress generated by host plant cells. With the native promoter-driven KatG2-mRFP strain, we show that KatG2-mRFP expression was induced in planta and accumulated in the infection front region at the early infection stage. In contrast to its ubiquitous cellular localization in runner hyphae, KatG2-mRFP is exclusively located on the cell wall of invading hyphal cells, especially at the pathogen-host cellular interface. Using posttranslational modification analysis, we found that asparagine residues at the 238 and 391 positions of KatG2 could be modified by N-glycosylation and that these two residues are required for KatG2 accumulation and cell wall localization in planta.  相似文献   

14.
Soil-borne fungal pathogen, Fusarium oxysporum causes major economic losses by inducing necrosis and wilting symptoms in many crop plants. Management of fusarium wilt is achieved mainly by the use of chemical fungicides which affect the soil health and their efficiency is often limited by pathogenic variability. Hence understanding the nature of interaction between pathogen and host may help to select and improve better cultivars. Current research evidences highlight the role of oxidative burst and antioxidant enzymes indicating that ROS act as an important signaling molecule in banana defense response against Fusarium oxysporum f.sp. cubense. The role of jasmonic acid signaling in plant defense against necrotrophic pathogens is well recognized. But recent studies show that the role of salicylic acid is complex and ambiguous against necrotrophic pathogens like Fusarium oxysporum, leading to many intriguing questions about its relationship between other signaling compounds. In case of banana, a major challenge is to identify specific receptors for effector proteins like SIX proteins and also the components of various signal transduction pathways. Significant progress has been made to uncover the role of defense genes but is limited to only model plants such as Arabidopsis and tomato. Keeping this in view, we review the host response, pathogen diversity, current understanding of biochemical and molecular changes that occur during host and pathogen interaction. Developing resistant cultivars through mutation, breeding, transgenic and cisgenic approaches have been discussed. This would help us to understand host defenses against Fusarium oxysporum and to formulate strategies to develop tolerant cultivars.  相似文献   

15.
Alpha-momorcharin (α-MMC), a member of the plant ribosomal inactivating proteins (RIPs) family, has been proven to exhibit important biological properties in animals, including antiviral, antimicrobial, and antitumour activities. However, the mechanism by which α-MMC increases plant resistance to viral infections remains unclear. To study the effect of α-MMC on plant viral defence and how α-MMC increases plant resistance to viruses, recombinant DNA and transgenic technologies were employed to investigate the role of α-MMC in Nicotiana benthamiana resistance to tobacco mosaic virus (TMV) infection. Treatment with α-MMC produced through DNA recombinant technology or overexpression of α-MMC mediated by transgenic technology alleviated TMV-induced oxidative damage and reduced the accumulation of reactive oxygen species (ROS) during TMV-green fluorescent protein infection of N. benthamiana. There was a significant decrease in TMV replication in the upper leaves following local α-MMC treatment and in α-MMC-overexpressing plants relative to control plants. These results suggest that application or overexpression of α-MMC in N. benthamiana increases resistance to TMV infection. Finally, our results showed that overexpression of α-MMC up-regulated the expression of ROS scavenging-related genes. α-MMC confers resistance to TMV infection by means of modulating ROS homeostasis through controlling the expression of antioxidant enzyme-encoding genes. Overall, our study revealed a new crosstalk mechanism between α-MMC and ROS during resistance to viral infection and provides a framework to understand the molecular mechanisms of α-MMC in plant defence against viral pathogens.  相似文献   

16.
Previously, we reported that mitochondria-associated hexokinases are active in controlling programmed cell death in plants (Plant Cell 18, 2341-2355). Here, we investigated their role under abiotic- and biotic-stress conditions. Expression ofNbHxk1, aNicotiana benthamiana hexokinase gene, was stimulated by treatment with salicylic acid or methyl viologen (MV), and was also up-regulated by pathogen infection. In response to MV-induced oxidative stress, NbHxk1-silenced plants exhibited increased susceptibility, while the HXK1— and HXK2-overexpressingArabidopsis plants had enhanced tolerance. Moreover, those overexpressing plants showed greater resistance to the necrotrophic fungal pathogenAlternaria brassicicola. HXK-over-expression also mildly protected plants against the bacterial pathogenPseudomonas syringae pv.tomato DC3000, a response that was accompanied by increased H2O2 production and elevatedPR1 gene expression. These results demonstrate that higher levels of hexokinase confer improved resistance to MV-induced oxidative stress and pathogen infection.  相似文献   

17.
Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.  相似文献   

18.
StCDPK1 is a calcium dependent protein kinase expressed in tuberizing potato stolons and in sprouting tubers. StCDPK1 genomic sequence contains eight exons and seven introns, the gene structure is similar to Arabidopsis, rice and wheat CDPKs belonging to subgroup IIa. There is one copy of the gene per genome and it is located in the distal portion of chromosome 12. Western blot and immunolocalization assays (using confocal and transmission electron microscopy) performed with a specific antibody against StCDPK1 indicate that this kinase is mainly located in the plasma membrane of swelling stolons and sprouting tubers. Sucrose (4–8%) increased StCDPK1 protein content in non-induced stolons, however the amount detected in swelling stolons was higher. Transgenic lines with reduced expression of StCDPK1 (β7) did not differ from controls when cultured under multiplication conditions, but when grown under tuber inducing conditions some significant differences were observed: the β7 line tuberized earlier than controls without the addition of CCC (GA inhibitor), developed more tubers than wild type plants in the presence of hormones that promote tuberization in potato (ABA and BAP) and was more insensitive to GA action (stolons were significantly shorter than those of control plants). StCDPK1 expression was induced by GA, ABA and BAP. Our results suggest that StCDPK1 plays a role in GA-signalling and that this kinase could be a converging point for the inhibitory and promoting signals that influence the onset of potato tuberization.  相似文献   

19.
20.
Mitogen‐activated protein kinase (MAPK) cascades have important functions in plant stress responses and development and are key players in reactive oxygen species (ROS) signalling and in innate immunity. In Arabidopsis, the transmission of ROS and pathogen signalling by MAPKs involves the coordinated activation of MPK6 and MPK3; however, the specificity of their negative regulation by phosphatases is not fully known. Here, we present genetic analyses showing that MAPK phosphatase 2 (MKP2) regulates oxidative stress and pathogen defence responses and functionally interacts with MPK3 and MPK6. We show that plants lacking a functional MKP2 gene exhibit delayed wilting symptoms in response to Ralstonia solanacearum and, by contrast, acceleration of disease progression during Botrytis cinerea infection, suggesting that this phosphatase plays differential functions in biotrophic versus necrotrophic pathogen‐induced responses. MKP2 function appears to be linked to MPK3 and MPK6 regulation, as indicated by BiFC experiments showing that MKP2 associates with MPK3 and MPK6 in vivo and that in response to fungal elicitors MKP2 exerts differential affinity versus both kinases. We also found that MKP2 interacts with MPK6 in HR‐like responses triggered by fungal elicitors, suggesting that MPK3 and MPK6 are subject to differential regulation by MKP2 in this process. We propose that MKP2 is a key regulator of MPK3 and MPK6 networks controlling both abiotic and specific pathogen responses in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号