首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Igarashi T  Araki S  Mori H  Takeda S 《FEBS letters》2007,581(13):2416-2422
Catrocollastatin/vascular apoptosis-inducing protein (VAP)2B is a metalloproteinase from Crotalus atrox venom, possessing metalloproteinase/disintegrin/cysteine-rich (MDC) domains that bear the typical domain architecture of a disintegrin and metalloproteinase (ADAM)/adamalysin/reprolysin family proteins. Here we describe crystal structures of catrocollastatin/VAP2B in three different crystal forms, representing the first reported crystal structures of a member of the monomeric class of this family of proteins. The overall structures show good agreement with both monomers of atypical homodimeric VAP1. Comparison of the six catrocollastatin/VAP2B monomer structures and the structures of VAP1 reveals a dynamic, modular architecture that may be important for the functions of ADAM/adamalysin/reprolysin family proteins.  相似文献   

2.
ADAM13 is a member of the disintegrin and metalloprotease protein family that is expressed on cranial neural crest cells surface and is essential for their migration. ADAM13 is an active protease that can cleave fibronectin in vitro and remodel a fibronectin substrate in vivo. Using a recombinant secreted protein containing both disintegrin and cysteine-rich domains of ADAM13, we show that this "adhesive" region of the protein binds directly to fibronectin. Fibronectin fusion proteins corresponding to the various functional domains were used to define the second heparin-binding domain as the ADAM13 binding site. Mutation of the syndecan-binding site (PPRR --> PPTM) within this domain abolishes binding of the recombinant disintegrin and cysteine-rich domains of ADAM13. We further show that the adhesive disintegrin and cysteine-rich domain of ADAM13 can promote cell adhesion via beta(1) integrins. This adhesion requires integrin activation and can be prevented by antibodies to the cysteine-rich domain of ADAM13 and beta(1) integrin. Finally, wild type, but not the E/A mutant of ADAM13 metalloprotease domain, can be shed from the cell surface, releasing the metalloprotease domain associated with the disintegrin and cysteine-rich domains. This suggests that ADAM13 shedding may involve its own metalloprotease activity and that the released protease may interact with both integrins and extracellular matrix proteins.  相似文献   

3.
Snake venom metalloproteinases (SVMPs) are members of the Reprolysin family of metalloproteinases to which the ADAM (a disintegrin and metalloproteinase) proteins also belong. The disintegrin-like/cysteine-rich domains of the ADAMs have been implicated in their function. In the case of the SVMPs, we hypothesized that these domains could function to target the metalloproteinases to key extracellular matrix proteins or cell surface proteins. Initially we detected interaction of collagen XIV, a fibril-associated collagen with interrupted triple helices containing von Willebrand factor A (VWA) domains, with the PIII SVMP catrocollastatin. Next we investigated whether other VWA domain-containing matrix proteins could support the binding of PIII SVMPs. Using surface plasmon resonance, the PIII SVMP jararhagin and a recombinant cysteine-rich domain from a PIII SVMP were demonstrated to bind to collagen XIV, collagen XII, and matrilins 1, 3, and 4. Jararhagin was shown to cleave these proteins predominantly at sites localized at or near the VWA domains suggesting that it is the VWA domains to which the PIII SVMPs are binding via their cysteine-rich domain. In light of the fact that these extracellular matrix proteins function to stabilize matrix, targeting the SVMPs to these proteins followed by their specific cleavage could promote the destabilization of extracellular matrix and cell-matrix interactions and in the case of capillaries could contribute to their disruption and hemorrhage. Although there is only limited structural homology shared by the cysteine-rich domains of the PIII SVMPs and the ADAMs our results suggest an analogous function for the cysteine-rich domains in certain members of the expanded ADAM family of proteins to target them to VWA domain-containing proteins.  相似文献   

4.
Members of the ADAM (a disintegrin and metalloproteinase) family of proteins possess a multidomain architecture which permits functionalities as adhesion molecules, signalling intermediates and proteolytic enzymes. ADAM8 is found on immune cells and is induced by multiple pro-inflammatory stimuli suggesting a role in inflammation. Here we describe an activation mechanism for recombinant human ADAM8 that is independent from classical PC (pro-protein convertase)-mediated activation. N-terminal sequencing revealed that, unlike other ADAMs, ADAM8 undergoes pre-processing at Glu(158), which fractures the Pro (pro-segment)-domain before terminal activation takes place to remove the putative cysteine switch (Cys(167)). ADAM8 lacking the DIS (disintegrin) and/or CR (cysteine-rich) and EGF (epidermal growth factor) domains displayed impaired ability to complete this event. Thus pre-processing of the Pro-domain is co-ordinated by DIS and CR/EGF domains. Furthermore, by placing an EK (enterokinase) recognition motif between the Pro- and catalytic domains of multiple constructs, we were able to artificially remove the pro-segment prior to pre-processing. In the absence of pre-processing of the Pro-domain a marked decrease in specific activity was observed with the autoactivated enzyme, suggesting that the Pro-domain continued to associate and inhibit active enzyme. Thus, pre-processing of the Pro-domain of human ADAM8 is important for enzyme maturation by preventing re-association of the pro-segment with the catalytic domain. Given the observed necessity of DIS and CR/EGF for pre-processing, we conclude that these domains are crucial for the proper activation and maturation of human ADAM8.  相似文献   

5.
ADAM is a recently discovered gene family that encodes proteins with a disintegrin and metalloproteinase. ADAMTS-1 is a gene encoding a new member protein of the ADAM family with the thrombospondin (TSP) type I motif, the expression of which is associated with inflammatory processes. In the present study, we have characterized the exon/intron organization of the mouse ADAMTS-1 gene. The ADAMTS-1 gene is composed of nine exons, all of which are present within the 9.2-kb genomic region. Among the nine exons, exons 1, 5, and 6 encode a proprotein domain, a disintegrin-like domain, and a TSP type I motif, respectively, of the ADAMTS-1 protein, suggesting that there is a correlation between exon/intron organization and functional domains. In addition, the exon/ intron organization of the ADAMTS-1 gene is very different from that of the metalloproteinase-like/disintegrin-like/cysteine-rich protein gene (MDC) (ADAM11), suggesting that the genomic structure of ADAM family genes is not necessarily conserved. Furthermore, fluorescencein situhybridization revealed that the ADAMTS-1 gene is located in region C3–C5 of chromosome 16, to which none of the previously identified ADAM genes have been mapped.  相似文献   

6.
The Eph family of receptor tyrosine kinases and their ephrin ligands are mediators of cell-cell communication. Cleavage of ephrin-A2 by the ADAM10 membrane metalloprotease enables contact repulsion between Eph- and ephrin-expressing cells. How ADAM10 interacts with ephrins in a regulated manner to cleave only Eph bound ephrin molecules remains unclear. The structure of ADAM10 disintegrin and cysteine-rich domains and the functional studies presented here define an essential substrate-recognition module for functional interaction of ADAM10 with the ephrin-A5/EphA3 complex. While ADAM10 constitutively associates with EphA3, the formation of a functional EphA3/ephrin-A5 complex creates a new molecular recognition motif for the ADAM10 cysteine-rich domain that positions the proteinase domain for effective ephrin-A5 cleavage. Surprisingly, the cleavage occurs in trans, with ADAM10 and its substrate being on the membranes of opposing cells. Our data suggest a simple mechanism for regulating ADAM10-mediated ephrin proteolysis, which ensures that only Eph bound ephrins are recognized and cleaved.  相似文献   

7.
徐存拴  张为民 《遗传》2002,24(3):367-370
ADAM,又称MDC,分别是去整合蛋白和金属蛋白水解酶(a disintegrin and metalloproteinase,ADAM)及金属蛋白水解酶、去整合蛋白和富半胱氨酸(metalloproteinase/disintegrin/cysteine-rich,MDC)的英文缩写,是近几年在多细胞动物中发现的一类含信号肽区、前调控区、金属蛋白水解酶区、去整合蛋白区、富半胱氨酸区、上皮生长因子区、跨膜区和胞内区的细胞表面糖蛋白,本文简要总结了有关ADAM起源、遗传、进化和亲缘关系的研究结果。 Abstract:ADAM (a disintegrin and metalloproteinase),or named MDC (metalloproteinase/disintegrin/cysteine-rich) is a family of glycoproteins in cell surface,which was found in recent years and consists of a signal peptide,a propetide,a metalloproteinase,a disintegrin,a cysteine-rich domain,and an epidermal growth factor (EGF)-like domain,a transmembrane region,and a cytoplasmic tail.The research results about their origin,heredity,evolution and evolutionary relationship are summaried in this paper.  相似文献   

8.
ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-S(y)5(y)) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with alphavbeta3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting alphavbeta3-mediated interactions of diverse proteins, including other disintegrins. alphavbeta3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in alphavbeta3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin.  相似文献   

9.
A disintegrin and metalloproteinase (ADAM) family of proteins constitutes a major class of mammalian membrane-bound sheddases that are responsible for the processing of cell-surface-protein ectodomains, including the latent forms of growth factors, cytokines and their receptors. However, the molecular mechanism by which ADAMs recognize and process their substrates is largely unknown. Recent crystallographic studies on phylogenically related snake venom metalloproteinases (SVMPs) and mammalian ADAM with thrombospondin type-1 motif (ADAMTS) family proteins have shed light on the structure-function properties of ADAMs. This review will highlight these recent structures, particularly the non-catalytic ancillary domains, which might be important for substrate recognition.  相似文献   

10.
Takeda S  Igarashi T  Mori H 《FEBS letters》2007,581(30):5859-5864
Russell's viper venom factor X activator (RVV-X) is a heterotrimeric metalloproteinase with a mammalian ADAM-like heavy chain and two lectin-like light chains. The crystal structure of RVV-X has been determined at 2.9 A resolution and shows a hook-spanner-wrench-like architecture, in which the metalloproteinase/disintegrin region constitutes a hook, and the lectin-like domains constitute a handle. A 6.5nm separation between the catalytic site and a putative exosite suggests a docking model for factor X. The structure provides a typical example of the molecular evolution of multi-subunit proteins and insights into the molecular basis of target recognition and proteolysis by ADAM/adamalysin/reprolysin proteinases.  相似文献   

11.
Takeda S  Igarashi T  Mori H  Araki S 《The EMBO journal》2006,25(11):2388-2396
ADAMs (a disintegrin and metalloproteinase) are sheddases possessing extracellular metalloproteinase/disintegrin/cysteine-rich (MDC) domains. ADAMs uniquely display both proteolytic and adhesive activities on the cell surface, however, most of their physiological targets and adhesion mechanisms remain unclear. Here for the first time, we reveal the ADAMs' MDC architecture and a potential target-binding site by solving crystal structures of VAP1, a snake venom homolog of mammalian ADAMs. The D-domain protrudes from the M-domain opposing the catalytic site and constituting a C-shaped arm with cores of Ca2+ ions. The disintegrin-loop, supposed to interact with integrins, is packed by the C-domain and inaccessible for protein binding. Instead, the hyper-variable region (HVR) in the C-domain, which has a novel fold stabilized by the strictly conserved disulfide bridges, constitutes a potential protein-protein adhesive interface. The HVR is located at the distal end of the arm and faces toward the catalytic site. The C-shaped structure implies interplay between the ADAMs' proteolytic and adhesive domains and suggests a molecular mechanism for ADAMs' target recognition for shedding.  相似文献   

12.
ADAM family proteins are type I transmembrane, zinc-dependent metalloproteases. This family has multiple conserved domains, including a signal peptide, a pro-domain, a metalloprotease domain, a disintegrin (DI) domain, a cysteine-rich (Cys) domain, an EGF-like domain, a transmembrane domain, and a cytoplasmic domain. The Cys and DI domains may play active roles in regulating proteolytic activity or substrate specificity. ADAM19 has an autolytic processing activity within its Cys domain, and the processing is necessary for its proteolytic activity. To identify a new physiological function of ADAM19, we screened for associating proteins by using the extracellular domain of ADAM19 in a yeast two-hybrid system. Cysteine-rich protein 2 (CRIP2) showed an association with ADAM19 through its DI and Cys domains. Sequence analysis revealed that CRIP2 is a secretable protein without a classical signal. CRIP2 secretion was increased by overexpression of ADAM19 and decreased by suppression of ADAM19 expression. Moreover, CRIP2 secretion increased in parallel with the autolytic processing of ADAM19 stimulated by lipopolysaccharide. These findings suggest that ADAM19 autolysis is activated by lipopolysaccharide and that ADAM19 promotes the secretion of CRIP2.  相似文献   

13.
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type I motifs) family of proteases plays a role in pathological conditions including arthritis, cancer, thrombotic thrombocytopenic purpura and the Ehlers-Danlos type VIIC and Weill-Marchesani genetic syndromes. Here, we report the first crystal structures for a member of the ADAMTS family, ADAMTS-1. Originally cloned as an inflammation-associated gene, ADAMTS-1 has been shown to be involved in tissue remodelling, wound healing and angiogenesis. The crystal structures contain catalytic and disintegrin-like domains, both in the inhibitor-free form and in complex with the inhibitor marimastat. The overall fold of the catalytic domain is similar to related zinc metalloproteinases such as matrix metalloproteinases and ADAMs (a disintegrin and metalloproteinases). The active site contains the expected organisation of residues to coordinate zinc but has a much larger S1' selectivity pocket than ADAM33. The structure also unexpectedly reveals a double calcium-binding site. Also surprisingly, the previously named disintegrin-like domain showed no structural homology to the disintegrin domains of other metalloproteinases such as ADAM10 but is instead very similar in structure to the cysteine-rich domains of other metalloproteinases. Thus, this study suggests that the D (for disintegrin-like) in the nomenclature of ADAMTS enzymes is likely to be a misnomer. The ADAMTS-1 cysteine-rich domain stacks against the active site, suggesting a possible regulatory role.  相似文献   

14.
The extracellular domain of the mature form of ADAM12 consists of the metalloprotease, disintegrin, cysteine-rich, and epidermal growth factor (EGF)-like domains. The disintegrin, cysteine-rich, and EGF-like fragments have been shown previously to support cell adhesion via activated integrins or proteoglycans. In this study, we report that the entire extracellular domain of mouse ADAM12 produced in Drosophila S2 cells supported efficient adhesion and spreading of C2C12 myoblasts even in the absence of exogenous integrin activators. This adhesion was not mediated by beta1 integrins or proteoglycans, was myoblast-specific, and required the presence of both the metalloprotease and disintegrin/cysteine-rich domains of ADAM12. Analysis of the recombinant proteins by far-UV circular dichroism suggested that the secondary structures of the autonomously expressed metalloprotease domain and the disintegrin/cysteine-rich/EGF-like domains differ from the structures present in the intact extracellular domain. Furthermore, the intact extracellular domain (but not the metalloprotease domain or the disintegrin/cysteine-rich/EGF-like fragment alone) decreased the expression of the cell cycle inhibitor p21 and myogenin, two markers of differentiation, and inhibited C2C12 myoblast fusion. Thus, the novel protein-protein interaction reported here involving the extracellular domain of ADAM12 may have important biological consequences during myoblast differentiation.  相似文献   

15.
Catalytic properties of ADAM12 and its domain deletion mutants   总被引:1,自引:0,他引:1  
Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower affinity (9-44 nM). However, TIMP-1 is a much weaker inhibitor. N-TIMP-3 variants that lack MMP inhibitory activity but retained the ability to inhibit ADAM17/TACE failed to inhibit ADAM12. These results indicate unique enzymatic properties of ADAM12 among the members of the ADAM family of metalloproteinases.  相似文献   

16.
Jararhagin, a hemorrhagin from Bothrops jararaca venom, is a soluble snake venom component comprising metalloproteinase and disintegrin cysteine-rich domains and, therefore, is structurally closely related to the membrane-bound A Disintegrin And Metalloproteinase (ADAMs) protein family. Its hemorrhagic activity is associated with the effects of both metalloproteinase and disintegrin domains; the metalloproteinase enzymatically damages the endothelium and the disintegrin domain inhibits platelet-collagen interactions. The expression of whole jararhagin or its disintegrin domain has never been attempted before. The aim of this study was to investigate whether we could express the disintegrin domain of jararhagin and to verify whether this domain displays an inhibitory effect on the platelet-collagen interaction. Therefore, the cDNA fragment coding for the disintegrin plus cysteine-rich domains of jararhagin was cloned into the pET32a vector, used to transform the Escherichia coli AD494(DE3)pLysS strain. The thioredoxin-disintegrin fusion protein was recovered from the soluble extract of the cells, yielding up to 50 mg/liter culture. The fusion protein was isolated using polyhistidine binding resin which resulted in a main band of 45 kDa recognized by anti-native jararhagin antibodies. Antibodies raised in rabbits against the fusion protein had high enzyme-linked immunosorbent assay titers against native jararhagin and detected a band of 52 kDa on Western blots of whole B. jararaca venom demonstrating that these antibodies recognize the parent jararhagin molecule. Treatment of the fusion protein with enterokinase, followed by further capture of the enzyme, resulted in a band of 30 kDa, the expected size for jararhagin-C. Further purification of the cleaved disintegrin using FPLC Mono-Q columns resulted in one fraction capable of efficiently inhibiting collagen-induced platelet aggregation in a dose-dependent manner (IC(50) of 8.5 microg/ml).  相似文献   

17.
The metalloproteinase ADAM15 is a multi‐domain disintegrin protease that is upregulated in a variety of human cancers. ADAM15 mRNA and protein levels are increased in prostate cancer and its expression is significantly increased during metastatic progression. It is likely that ADAM15 supports disease progression differentially through the action of its various functional domains. ADAM15 may downregulate adhesion of tumor cells to the extracellular matrix, reduce cell–cell adhesion, and promote metastasis through the activity of its disintegrin and metalloproteinase domains. Additionally, ADAM15 can influence cell signaling by shedding membrane‐bound growth factors and other proteins that interact with receptor tyrosine kinases, leading to receptor activation. There is also evidence supporting a role for ADAM15 in angiogenesis and angioinvasion of tumor cells, which are critical for unrestrained tumor growth and metastatic spread. Given its diverse functions, ADAM15 may represent a pivotal regulatory component of tumor progression, an important target for therapeutic intervention, or emerge as a biomarker of disease progression. J. Cell. Biochem. 106: 967–974, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The membrane-anchored metalloproteinase ADAM17 (TNF-alpha converting enzyme; TACE; EC 3.4.24.86) continues to be an attractive drug target in inflammatory diseases and cancer. Cocrystallization of its catalytic domain with a lead compound was complicated by the tenacious retention of the prodomain that has been shown to be enhanced if ADAM17 is expressed without the disintegrin/cysteine-rich domain that normally follows the N-terminal metalloproteinase. When a truncated form of ADAM17 composed of the signal peptide with the pro- and catalytic domains was expressed in baculovirus-infected insect cells, the major secreted product was a ternary complex of two prodomain fragments with the catalytic domain. The component polypeptides of the ternary complex were characterized by N-terminal analysis and mass spectrometry. Internal cleavage of the propeptide occurred following Arg-58, and a carboxypeptidase variably removed up to three basic residues from the newly created C-terminus. Cleavage at the C-terminus of the propeptide occurred after Arg-214. To prepare ADAM17 for crystal growth, a drug-like inhibitor was used to displace the propeptide and the complex of the catalytic domain with the inhibitor was isolated by size-exclusion chromatography and crystallized.  相似文献   

19.
One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer.  相似文献   

20.
One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号