首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
In the brain malonyl-CoA serves the important function of monitoring and modulating energy balance. Because of its central role in the metabolism of higher animals, glucose acts as the principal indicator of global energy status. Specialized neuronal nuclei within the hypothalamus sense blood glucose and signal higher brain centers to adjust feeding behavior and energy expenditure accordingly. As the level of glucose entering the brain rises, food intake is suppressed. Energy status information triggered by glucose is transmitted via hypothalamic signaling intermediaries, i.e. AMPK and malonyl-CoA, to the orexigenic/anorexigenic neuropeptide system that determines hunger and energy expenditure. The central metabolism of glucose by the glycolytic pathway generates ATP which produces a compensatory decrease in AMP level and AMPK activity. Since acetyl-CoA carboxylase (ACC) is a substrate of AMPK, lowering AMP increases the catalytic activity of ACC and thereby, the level of its reaction product, malonyl-CoA. Malonyl-CoA signals the anorexigenic-orexigenic neuropeptide system to suppress food intake. Unlike glucose, however, centrally metabolized fructose increases food intake. This paradox results because fructose bypasses the rate-limiting step of glycolysis and uses a rapid ATP-requiring reaction that abruptly depletes ATP and provokes a compensatory rise in AMP. Thus, fructose has the opposite effect of glucose on the AMPK/malonyl-CoA signaling system and thereby, feeding behavior. The fact that fructose metabolism by the brain increases food intake and obesity risk raises health concerns in view of the large and increasing per capita consumption of high fructose sweeteners, especially by youth.  相似文献   

2.
The cellular level of malonyl-CoA, an intermediate in fatty acid biosynthesis, depends on its rate of synthesis catalyzed by acetyl-CoA carboxylase relative to its rate of utilization and degradation catalyzed by fatty acid synthase and malonyl-CoA decarboxylase, respectively. Recent evidence suggests that hypothalamic malonyl-CoA functions in the regulation of feeding behavior by altering the expression of key orexigenic and anorexigenic neuropeptides. Here we report that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a 5'-AMP kinase activator, rapidly lowers malonyl-CoA both in GT1-7 hypothalamic neurons and in the hypothalami of mice. These effects correlate closely with the phosphorylation of acetyl-CoA carboxylase, an established target of AMP kinase. Intracerebroventricular (i.c.v.) administration of AICAR rapidly lowers hypothalamic [malonyl-CoA] and increases food intake. Expression of an adenoviral cytosolic malonyl-CoA decarboxylase vector (Ad-cMCD) in hypothalamic GT1-7 cells decreases malonyl-CoA. When delivered by bilateral stereotaxic injection into the ventral hypothalamus (encompassing the arcuate nucleus) of mice, Ad-cMCD increases food intake and body weight. Ad-MCD delivered into the ventral hypothalamus also reverses the rapid suppression of food intake caused by i.c.v.-administered C75, a fatty acid synthase inhibitor that increases hypothalamic [malonyl-CoA]. Taken together these findings implicate malonyl-CoA in the hypothalamic regulation of feeding behavior.  相似文献   

3.
The role of hypothalamic malonyl-CoA in energy homeostasis   总被引:1,自引:0,他引:1  
Energy balance is monitored by hypothalamic neurons that respond to peripheral hormonal and afferent neural signals that sense energy status. Recent physiologic, pharmacologic, and genetic evidence has implicated malonyl-CoA, an intermediate in fatty acid synthesis, as a regulatory component of this energy-sensing system. The level of malonyl-CoA in the hypothalamus is dynamically regulated by fasting and feeding, which alter subsequent feeding behavior. Fatty acid synthase (FAS) inhibitors, administered systemically or intracerebroventricularly to lean or obese mice, increase hypothalamic malonyl-CoA leading to the suppression of food intake. Conversely, lowering malonyl-CoA with an acetyl-CoA carboxylase (ACC) inhibitor or by the ectopic expression of malonyl-CoA decarboxylase in the hypothalamus increases food intake and reverses inhibition by FAS inhibitors. Physiologically, the level of hypothalamic malonyl-CoA appears to be determined through phosphorylation/dephosphorylation of ACC by AMP kinase in response to changes in the AMP/ATP ratio, an indicator of energy status. Recent evidence suggests that the brain-specific carnitine:palmitoyl-CoA transferase-1 (CPT1c) may be a regulated target of malonyl-CoA that relays the "malonyl-CoA signal" in hypothalamic neurons that express the orexigenic and anorexigenic neuropeptides that regulate food intake and peripheral energy expenditure. Together these findings support a role for malonyl-CoA as an intermediary in the control of energy homeostasis.  相似文献   

4.
Hypothalamic neurons of the arcuate nucleus control food intake, releasing orexigenic and anorexigenic neuropeptides in response to changes in glucose concentration. Several studies have suggested that the glucosensing mechanism is governed by a metabolic interaction between neurons and glial cells via lactate flux through monocarboxylate transporters (MCTs). Hypothalamic glial cells (tanycytes) release lactate through MCT1 and MCT4; however, similar analyses in neuroendocrine neurons have yet to be undertaken. Using primary rat hypothalamic cell cultures and fluorimetric assays, lactate incorporation was detected. Furthermore, the expression and function of MCT2 was demonstrated in the hypothalamic neuronal cell line, GT1-7, using kinetic and inhibition assays. Moreover, MCT2 expression and localization in the Sprague Dawley rat hypothalamus was analyzed using RT-PCR, in situ hybridization and Western blot analyses. Confocal immunohistochemistry analyses revealed MCT2 localization in neuronal but not glial cells. Moreover, MCT2 was localized to ∼90% of orexigenic and ∼60% of anorexigenic neurons as determined by immunolocalization analysis of AgRP and POMC with MCT2-positives neurons. Thus, MCT2 distribution coupled with lactate uptake by hypothalamic neurons suggests that hypothalamic neurons control food intake using lactate to reflect changes in glucose levels.  相似文献   

5.
Goebel M  Stengel A  Wang L  Taché Y 《Peptides》2011,32(1):36-43
Nesfatin-1 is well established to reduce food intake upon brain injection in rats, while in mice its anorexigenic action and brain expression are largely unexplored. We characterized the influence of intracerebroventricular (icv) and peripheral (intraperitoneal, ip, subcutaneous, sc) injection of nesfatin-1 on dark phase ingestive behavior using an automated feeding monitoring system and co-localized NUCB2/nesfatin-1 immunoreactivity in the associated brain areas. Nesfatin-1 (0.3, 1 or 3 μg/mouse, icv) caused a dose-related reduction of 4-h dark phase food intake by 13%, 27%, and 46% respectively. Nesfatin-1 (3 μg/mouse, icv) action had a 2-h delayed onset, 82% peak inhibition occurring at 3-4 h post-injection and was long lasting (30% reduction for 12 h period post-injection). Nesfatin-1 (3 μg/mouse, icv)-treated mice had a 46% lower meal frequency associated with 2-times longer inter-meal intervals and a 35% reduction in meal size compared to vehicle during the 1-4 h post-injection (p < 0.05). NUCB2/nesfatin-1-immunopositive neurons were found in hypothalamic (supraoptic, paraventricular, arcuate, dorsomedial, lateral) and brainstem (dorsal vagal complex) feeding regulatory nuclei. When injected peripherally, neither food intake nor feeding microstructure parameters were altered. These results demonstrate that NUCB2/nesfatin-1 is prominently expressed in mouse hypothalamus and medulla and acts in the brain to curtail the dark phase feeding by inducing satiation and satiety indicated by reduced meal size and prolonged inter-meal intervals respectively. The lack of nesfatin-1 effect when injected peripherally at a 23-times higher dose indicates a primarily central site of the anorexigenic action for nesfatin-1 in mice.  相似文献   

6.
The effect of centrally and peripherally administered dopamine D1 and D2 specific compounds on core body temperature in mice was investigated. Quinpirole (LY-17155), a D2 agonist, induced a dose-dependent fall in body temperature (2.4–11.6%; p<0.003) when injected intraperitoneally (ip, 0.3–3.0 mg/kg) and intracerebroventricularly (icv, 0.1 mg/kg). This quinpirole-induced (1.0 mg/kg, ip) hypothermia was reversed by the central and peripheral administration of the D2 antagonists S-(–)-sulpiride (3.0–30.0 mg/kg, ip; 0.1–3.0 mg/kg, icv) and spiperone (0.03 and 0.1 mg/kg, ip; 0.03–3.0 mg/kg, icv). Domperidone, a D2 antagonist which does not cross the blood brain barrier, had no effect on quinpirole-induced hypothermia (1.0–10.0 mg/kg, ip). Domperidone partially reversed quinpirole-induced hypothermia at 0.1–30.0 mg/kg, icv. The D1 agonist, SKF-38393 at a high dose of 10.0 mg/kg, ip mildly attenuated quinpirole-induced hypothermia (a 1.8% increase in temperature). SKF-38393 at 10.0 mg/kg, icv potentiated quinpirole-induced hypothermia. SCH-23390 (0.1–3.0 mg/kg, ip), a D1 antagonist, had no effect on quinpirole-induced hypothermia and potentiated the hypothermia when administered icv. An ineffective icv dose of spiperone (0.01 mg/kg) in reversing quinpirole-induced hypothermia was rendered effective by prior administration of SCH-23390 (0.1–3.0 mg/kg, icv) but not by SKF-38393 (1.0–10.0 mg/kg, icv). These data suggest a central D2 receptor mechanism mediating hypothermia in mice which is capable of being modulated by the D1 receptor.  相似文献   

7.
TRH is a peptide produced by the hypothalamus which major function in mammals is the regulation of TSH secretion by the pituitary. In fish, TRH does not appear to affect TSH secretion, suggesting that it might regulate other functions. In this study, we assessed the effects of central (intracerebroventricular, icv) injections of TRH on feeding and locomotor behavior in goldfish. TRH at 10 and 100 ng/g, but not 1 ng/g, significantly increased feeding and locomotor behaviors, as indicated by an increase in food intake and in the number of total feeding acts as compared to saline-injected fish. In order to assess possible interactions between TRH and other appetite regulators, we examined the effects of icv injections of TRH on the hypothalamic expression of orexin, orexin receptor and CART. The mRNA expression levels of all three peptides were significantly increased in fish injected with TRH at 100 ng/g as compared to saline-injected fish. Fasting increased TRH, orexin, and orexin receptor hypothalamic mRNA levels and decreased CART hypothalamic mRNA levels. Our results suggest that TRH is involved in the regulation of feeding/locomotor activity in goldfish and that this action is associated with a stimulation of both the orexin and CART systems.  相似文献   

8.
The aim of the present study was to evaluate in hypothalamus and hindbrain of rainbow trout in vitro the effect of leptin treatment on glucosensing capacity and the expression of orexigenic and anorexigenic peptides involved in the control of food intake. In a first experiment, the response of parameters involved in glucosensing (GK, PK and GSase activities; GK expression and glucose; glycogen and DHAP levels) and the expression of orexigenic (NPY) and anorexigenic (POMC, CART, CRF) peptides was assessed in hypothalami and hindbrain incubated for 1 h with 2, 4 or 8 mM d-glucose alone (controls) or with 10 nM leptin, or with 10 nM leptin plus inhibitors of leptin signaling pathways (50 nM wortmannin and 500 nM AG490). Leptin treatment increased levels in parameters involved in glucosensing. Leptin treatment decreased NPY mRNA levels in hypothalamus without affecting the expression of the other peptides assessed. Leptin effects were reverted in the presence of inhibitors for all parameters assessed suggesting the involvement of JAK/STAT and IRS-PI(3)K pathways. In a second experiment, we observed time-dependent (1-3 h) and dose (10, 20 and 50 nM)- effects of leptin treatment in decreasing NPY mRNA levels without affecting expression of the other peptides assessed. Considering the orexigenic action of NPY in fish, it seems that the anorexic effect of leptin can be mediated by reduced expression of NPY occurring in hypothalamus, and that change can be related to the activation of the glucosensing system occurring simultaneously.  相似文献   

9.
Ghrelin stimulates feeding when administered centrally and peripherally. The lateral hypothalamus (LH) is thought to mediate ghrelin-induced hyperphagia. Thus, we examined central mechanisms underlying feeding generated by LH ghrelin. We determined that 0.3nmol of LH-injected ghrelin was the lowest dose increasing food consumption and it induced Fos immunoreactivity (IR; a marker of neuronal activation) in feeding-related brain areas, including the hypothalamic paraventricular, arcuate, and dorsomedial nuclei, amygdala, and nucleus of the solitary tract. Also, LH ghrelin induced Fos IR in LH orexin neurons. We conclude that the LH, as part of larger central circuitry, integrates orexigenic properties of ghrelin.  相似文献   

10.
Current evidence suggests that hypothalamic fatty acid metabolism may play a role in regulating food intake; however, confirmation that it is a physiologically relevant regulatory system of feeding is still incomplete. Here, we use pharmacological and genetic approaches to demonstrate that the physiological orexigenic response to ghrelin involves specific inhibition of fatty acid biosynthesis induced by AMP-activated protein kinase (AMPK) resulting in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. In addition, we also demonstrate that fasting downregulates fatty acid synthase (FAS) in a region-specific manner and that this effect is mediated by an AMPK and ghrelin-dependent mechanisms. Thus, decreasing AMPK activity in the ventromedial nucleus of the hypothalamus (VMH) is sufficient to inhibit ghrelin's effects on FAS expression and feeding. Overall, our results indicate that modulation of hypothalamic fatty acid metabolism specifically in the VMH in response to ghrelin is a physiological mechanism that controls feeding.  相似文献   

11.
Primeaux SD 《Peptides》2011,32(6):1270-1275
Pyroglutamylated arginine-phenylalanineamide peptide (QRFP) is a neuropeptide involved in feeding behavior. Central administration of QRFP selectively increases the intake of a high fat diet in male rats. QRFP administration also stimulates the hypothalamic-pituitary-gonadal axis via gonadotrophin-releasing hormone in male and female rats. Prepro-QRFP mRNA is expressed in localized regions of the mediobasal hypothalamus which are abundant in neurotransmitters, neuropeptides and receptor systems important for food intake regulation and reproductive behaviors. The current experiments were conducted to investigate the effects of centrally administered QRFP-26 on the intake of a high fat diet (HFD, 60% kcal from fat) in female rats and to investigate alterations in hypothalamic prepro-QRFP and its receptors, GPR130a and GPR103b, mRNA levels over the estrous cycle. In Experiment 1, female rats were administered QRFP-26 (intracerebroventricular; 0.3 nmol, 0.5 nmol, 1.0 nmol) in rats consuming either a HFD or a low fat diet. All doses of QRFP-26 selectively increased the intake of the HFD in female rats. These data suggest that QRFP-26 regulates the intake of energy dense foods in female rats, which is similar to previous findings in male rats. In Experiment 2, hypothalamic levels of prepro-QRFP mRNA and its receptors were assessed during diestrus, proestrus, or estrus. The level of prepro-QRFP mRNA in the ventromedial/arcuate nucleus (VMH/ARC) of the hypothalamus was increased during proestrus, which suggests that endogenous estrogen levels regulate QRFP expression in the VMH/ARC. These data suggest that QRFP may play a role in coordinating feeding behaviors with reproductive function when energy demand is increased.  相似文献   

12.
Physiological and behavioral adjustments of small mammals are important strategies in response to variations in food availability. Although numerous of studies have been carried out in rodents, behavioral patterns in response to food deprivation and re-feeding (FD–RF) are still inconsistent. Here we examined effects of a 24 h FD followed by RF on general activity, serum leptin concentrations and gene expression of orexigenic and anorexigenic hypothalamic neuropeptides in striped hamsters (Cricetulus barabensis) with/without leptin supplements. The time spent on activity was increased by 2.5 fold in FD hamsters compared with controls fed ad libitum (P < 0.01). Body mass, fat mass as well as serum leptin concentrations were significantly decreased in FD hamsters in comparison with ad libitum controls, which were in parallel with hyperactivity. During re-feeding, leptin concentrations increased rapidly to pre-deprivation levels by 12 h, but locomotor activity decreased gradually and did not return to pre-deprivation levels until 5 days after re-feeding. Leptin administration to FD hamsters significantly attenuated the increased activity. Gene expression of hypothalamic neuropeptide Y (NPY) was upregulated in FD hamsters and fell down to control levels when hamsters were re-fed ad libitum, similar to that observed in activity behavior. Leptin supplement induced increases in serum leptin concentrations (184.1%, P < 0.05) in FD hamsters and simultaneously attenuated the increase in activity (45.8%, P < 0.05) and NPY gene expression (35%, P < 0.05). This may allow us to draw a more generalized conclusion that decreased leptin concentrations function as a starvation signal in animals under food shortage; to induce an increase in activity levels, leading animals to forage and/or migrate, and consequently increasing the chance of survival. Decreased concentrations of serum leptin in animals subjected to food shortage may induce an upregulation of gene expression of hypothalamus NPY, consequently driving a significant increase in foraging behavior.  相似文献   

13.
The orexigenic effect of urocortins (Ucns), namely Ucn 1, Ucn 2 and Ucn 3 through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF2) in the regulation of food intake using intraperitoneal (ip) injection of Ucns and the selective CRF2 antagonist, astressin2-B, and CRF2 knockout (−/−) mice. Meal structures were monitored using an automated episodic solid food intake monitoring system. Ucn 2 (3, 10 or 30 μg/kg, ip) induced a rapid in onset, long lasting and dose-dependent decrease (38%, 66% and 86%, respectively at 4 h) of cumulative food intake after an overnight fast in mice. Ucn 3 anorexic effect was 10-times less potent. Astressin2-B (30 or 100 μg/kg) injected ip, but not intracerebroventricularly, blocked the inhibitory effect of ip Ucn 1 and Ucn 2 (10 μg/kg). Fasted CRF2−/− mice did not respond to ip Ucn 1 (10 μg/kg). Meal microstructure analysis of the 4-h re-feeding response to an overnight fast showed that Ucn 2 (10 μg/kg, ip) decreased meal size and duration, but increased meal frequency. In mice fed ad libitum, Ucn 2 (30 μg/kg) injected ip before the dark phase decreased the 4-h nocturnal meal size and duration without influencing meal frequency while the 10 μg/kg dose had no effect. These data indicate that Ucns, through peripheral CRF2 receptor-mediated induction of satiation, inhibit the eating response to a fast more potently than the physiological nocturnal feeding in mice.  相似文献   

14.
Y Ueta  Y Hara  K Kitamura  K Kangawa  T Eto  Y Hattori  H Yamashita 《Peptides》2001,22(11):1817-1824
The effects of intracerebroventricular (icv) administration of adrenomedullin (AM) and proadrenomedullin NH2-terminal 20 peptide (PAMP) on the expression of Fos in the central nervous system (CNS) were examined in conscious rats, using immunohistochemistry. Fos-like immunoreactivity (LI) was detected in various brain areas of the rats, including the supraoptic nucleus, the paraventricular nucleus, the locus coeruleus, the area postrema and the nucleus of the tractus solitarius 90 min after icv administration of AM. Few cells with Fos-LI were found in the CNS 90 min after icv administration of saline. Fos-LI was also detected in the various hypothalamic areas after icv administration of PAMP. These results suggest that centrally administered AM and PAMP may cause physiological responses through the activation of a neural network in the hypothalamus and the brainstem.  相似文献   

15.
Acute administration of lipopolysaccharide (LPS) from Gram-negative bacteria induces hypophagia. However, the repeated administration of LPS leads to desensitization of hypophagia, which is associated with increased hypothalamic p-AMPK expression. Because ghrelin and endocannabinoids modulate AMPK activity in the hypothalamus, we hypothesized that these neuromodulators play a role in the reversal of tolerance to hypophagia in rats under long-term exposure to LPS. Male Wistar rats were treated with single (1 LPS, 100 μg/kg body weight, ip) or repeated injections of LPS over 6 days (6 LPS). Food intake was reduced in the 1 LPS, but not in the 6 LPS group. 6 LPS rats showed an increased serum concentration of acylated ghrelin and reduced ghrelin receptor mRNA expression in the hypothalamus. Ghrelin injection (40 μg/kg body weight, ip) increased food intake, body weight gain, p-AMPK hypothalamic expression, neuropeptide Y (NPY) and Agouti related peptide (AgRP) mRNA expression in control animals (Saline). However, in 6 LPS rats, ghrelin did not alter these parameters. Central administration of a CB1R antagonist (AM251, 200 ng/μl in 5 μl/rat) induced hypophagia in 6 LPS animals, suggesting that the endocannabinoid system contributes to preserved food intake during LPS tolerance. In the presence of AM251, the ability of ghrelin to phosphorylate AMPK in the hypothalamus of 6 LPS group was restored, but not its orexigenic effect. Our data highlight that the orexigenic effects of ghrelin require CB1R signaling downstream of AMPK activation. Moreover, CB1R-mediated pathways contribute to the absence of hypophagia during repeated exposure to endotoxin.  相似文献   

16.
Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9× higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.  相似文献   

17.
Orexigenic neuropeptides NPY and AgRP play major roles in feeding and are closely related to obesity and diabetic metabolic syndrome. This study explored the inhibitory effect of rutecarpine on feeding and obesity in high-fat-diet-induced (C57BL/6) and leptin-deficient (ob/ob) obese mice. Both mice strains developed obesity, but the obesity was inhibited by the reduced food intake resulting from rutecarpine treatment (0.01%, < 0.01). Blood cholesterol, non-fasting glucose, insulin, and leptin levels were reduced, compared with the control group. Rutecarpine inhibited the expression of NPY and AgRP in the arcuate nucleus (ARC) of the hypothalamus and suppressed the expression of both neuropeptides in N29-4 neuronal cells. These results indicate that rutecarpine ameliorates obesity by inhibiting food intake, which involves inhibited expression of the orexigenic neuropeptides NPY and AgRP.  相似文献   

18.
19.
The incidence of juvenile obesity is increasing at an alarming rate. In adults, central insulin administration decreases hypothalamic orexigenic neuropeptides, food intake and body weight more effectively in males than females. Mechanisms regulating energy balance in juvenile animals are inherently different from those in adults due to differences in growth rates and hormonal milieu. Therefore, we sought to determine if central insulin treatment in juvenile rats (4 wk) would have similar sex-dependent effects on food intake as those reported in adult rats. Twenty-four hour food intake was measured following icv saline or insulin (0.01 or 0.1 U) prior to the onset of dark phase of the light cycle. An additional set of animals was used to assess the effects of central insulin on hypothalamic orexigenic (NPY, AgRP) and anorexigenic (POMC) neuropeptide mRNA expression. In both males and females, insulin reduced meal size initially (first 4 h) and later decreased meal frequency (4-24 h) to reduce cumulative food intake. Consistent with this, central insulin decreased hypothalamic NPY and AgRP and increased POMC mRNA expression. In contrast to adult studies, there were no demonstrated sex differences. These studies indicate that juvenile females and males are equally sensitive to central insulin anorexigenic effects, perhaps due to a lack of circulating gonadal hormones. The anorexigenic responsiveness of both genders suggests a potential pharmacologic approach to childhood obesity.  相似文献   

20.
Hypothalamic neurons monitor peripheral energy status and produce signals to adjust food intake and energy expenditure to maintain homeostasis. However, the molecular mechanisms by which these signals are generated remain unclear. Fluctuations in the level of hypothalamic malonyl-CoA are known to serve as an intermediary in regulating energy homeostasis and it has been proposed that the brain-specific carnitine palmitoyltransferase-1c (CPT1c) serves as a target of malonyl-CoA in the central nervous system (CNS). Here, we report that CPT1c is widely expressed in neurons throughout the CNS including the hypothalamus, hippocampus, cortex, and amygdala. CPT1c is enriched in neural feeding centers of the hypothalamus with mitochondrial localization as an outer integral membrane protein. Ectopic over-expression of CPT1c by stereotactic hypothalamic injection of a CPT1c adenoviral vector is sufficient to protect mice from body weight gain when fed a high-fat diet. These findings show that CPT1c is appropriately localized in regions and cell types to regulate energy homeostasis and that its over-expression in the hypothalamus is sufficient to protect mice from adverse weight gain caused by high-fat intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号