首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
Isoflavonoids are distributed predominantly in leguminous plants, and play pivotal roles in the interaction of host plants with biological environments. Isoflavones in the diet also have beneficial effects on human health as phytoestrogens. The isoflavonoid skeleton is constructed by the CYP93C subfamily of cytochrome P450s in plant cells. The reaction consists of hydroxylation of the flavanone molecule at C-2 and an intramolecular 1,2-aryl migration from C-2 to C-3 to yield 2-hydroxyisoflavanone. In this study, with the aid of alignment of amino acid sequences of CYP93 family P450s and a computer-generated putative stereo structure of the protein, candidates for key amino acid residues in CYP93C2 responsible for the unique aryl migration in 2-hydroxyisoflavanone synthase reaction were identified. Microsomes of recombinant yeast cells expressing mutant proteins of CYP93C2 were prepared, and their catalytic activities tested. The reaction with the mutant in which Ser 310 in the centre of the I-helix was converted to Thr yielded increased formation of 3-hydroxyflavanone, a by-product of the 2-hydroxyisoflavanone synthase reaction, in addition to the major isoflavonoid product. More dramatically, the mutant in which Lys 375 in the end of beta-sheet 1-4 was replaced with Thr produced only 3-hydroxyflavanone and did not yield the isoflavonoid any longer. The roles of these amino acid residues in the catalysis and evolution of isoflavonoid biosynthesis are discussed.  相似文献   

2.
Cytochrome P450s in flavonoid metabolism   总被引:2,自引:0,他引:2  
In this review, cytochrome P450s characterized at the molecular level catalyzing aromatic hydroxylations, aliphatic hydroxylations and skeleton formation in the flavonoid metabolism are surveyed. They are involved in the biosynthesis of anthocyanin pigments and condensed tannin (CYP75, flavonoid 3′,5′-hydroxylase and 3′-hydroxylase), flavones [CYP93B, (2S)-flavanone 2-hydroxylase and flavone synthase II], and leguminous isoflavonoid phytoalexins [CYP71D9, flavonoid 6-hydroxylase; CYP81E, isoflavone 2′-hydroxylase and 3′-hydroxylase; CYP93A, 3,9-dihydroxypterocarpan 6a-hydroxylase; CYP93C, 2-hydroxyisoflavanone synthase (IFS)]. Other P450s of the flavonoid metabolism include methylenedioxy bridge forming enzyme, cyclases producing glyceollins, flavonol 6-hydroxylase and 8-dimethylallylnaringenin 2′-hydroxylase. Mechanistic studies on the unusual aryl migration by CYP93C, regulation of IFS expression in plant organs and its biotechnological applications are introduced, and flavonoid metabolisms by non-plant P450s are also briefly discussed.  相似文献   

3.
Some eukaryotic cytochromes P450 (P450s) have a series of ionic amino acids, corresponding to Lys250, Arg251, and Lys253 residues in the P450 1A2 sequence. To understand the roles of those ionic amino acids in the catalytic function of P450, three single mutants, Lys250Leu, Arg251Leu, and Lys253Leu of P450 1A2 were obtained from yeast (Saccharomyces cerevisiae) expression system. Turnover numbers of the Arg251Leu mutant in dealkylation reactions of methoxy- and ethoxyresorufin catalyzed by the P450 reconstituted system were remarkably increased by sixfold compared to those of the wild type. The Lys250Leu and Lys253Leu mutants also showed turnover numbers higher than those of the wild type by three- to fourfold. Those catalytic activities were inhibited competitively by pyridine derivatives, nitrogenous axial ligands to the P450 heme. From those findings together with other spectral data, it was suggested that the ionic site of Lys250, Arg251, and Lys253 may be somehow located near the substrate recognition site and/or near the axial-ligand access channel of this enzyme.  相似文献   

4.
5.
CYP199A2, a cytochrome P450 enzyme from Rhodopseudomonas palustris, oxidatively demethylates 4-methoxybenzoic acid to 4-hydroxybenzoic acid. 4-Ethylbenzoic acid is converted to a mixture of predominantly 4-(1-hydroxyethyl)-benzoic acid and 4-vinylbenzoic acid, the latter being a rare example of CC bond dehydrogenation of an unbranched alkyl group. The crystal structure of CYP199A2 has been determined at 2.0-Å resolution. The enzyme has the common P450 fold, but the B′ helix is missing and the G helix is broken into two (G and G′) by a kink at Pro204. Helices G and G′ are bent back from the extended BC loop and the I helix to open up a clearly defined substrate access channel. Channel openings in this region of the P450 fold are rare in bacterial P450 enzymes but more common in eukaryotic P450 enzymes. The channel is hydrophobic except for the basic residue Arg246 at the entrance, which probably plays a role in the specificity of this enzyme for charged benzoates over neutral phenols and benzenes. The substrate binding pocket is hydrophobic, with Ser97 and Ser247 being the only polar residues. Computer docking of 4-ethylbenzoic acid into the active site suggests that the substrate carboxylate oxygens interact with Ser97 and Ser247, and the β-methyl group is located over the heme iron by Phe185, the side chain of which is only 6.35 Å above the iron in the native structure. This binding orientation is consistent with the observed product profile of exclusive attack at the para substituent. Putidaredoxin of the CYP101A1 system from Pseudomonas putida supports substrate oxidation by CYP199A2 at ∼6% of the activity of the physiological ferredoxin. Comparison of the heme proximal faces of CYP199A2 and CYP101A1 suggests that charge reversal surrounding the surface residue Leu369 in CYP199A2 may be a significant factor in this low cross-activity.  相似文献   

6.
Wild-type naphthalene dioxygenase (NDO) from Pseudomonas sp. strain NCIB 9816-4 transforms relatively planar flavone and isoflavone to cis-dihydrodiols. However, this enzyme cannot catalyze the transformation of flavanone and isoflavanone in which a phenyl group bonds to the stereogenic C2 or C3 of the C-ring. Protein modeling suggested that Phe224 in the substrate binding site of NDO may play a key role in substrate specificity toward flavanone and isoflavanone. Site-directed mutants of NDO with substitution of Phe224 with Tyr biotransformed only the (S)-stereoisomers of flavanone and isoflavanone, producing an 8-OH group on the A-ring. In contrast, the Phe224Cys and Phe224Gln substitutions, which used (2S)-flavanone as a substrate, and Phe224Lys, which transformed (2S)-flavanone and (3S)-isoflavanone, each showed lower activity than the Phe224Tyr substitution. The remainder of the tested mutants had no activity with flavanone and isoflavanone. Protein docking studies of flavanone and isoflavanone to the modeled mutant enzyme structures revealed that an expanded substrate binding site, due to mutation at 224, as well as appropriate hydrophobic interaction with the residue at 224, are critical for successful binding of the substrates. Results of this study also suggested that in addition to the previously known Phe352, the Phe224 site of NDO appears to be important site for expanding the substrate range of NDO and bringing regiospecific and stereospecific hydroxylation reactions to C8 of the flavanone and isoflavanone A-rings.  相似文献   

7.
A highly selective affinity labeling of T7 RNA polymerase with the o-formylphenyl ester of GMP and [alpha-32P]UTP was carried out. The site of the labeling was located using limited cleavages with hydroxylamine, bromine, N-chlorosuccinimide and cyanogene bromide and was identified as the Lys631 residue. Site-directed mutagenesis using synthetic oligonucleotides was used to substitute Lys631 by a Gly, Leu or Arg residue. Kinetic studies of the purified mutant enzymes showed alterations of their polymerizing activity. For the Lys----Gly mutant enzyme, anomalous template binding was observed.  相似文献   

8.
CYP101D2 is a cytochrome P450 monooxygenase from Novosphingobium aromaticivorans which is closely related to CYP101A1 (P450cam) from Pseudomonas putida. Both enzymes selectively hydroxylate camphor to 5-exo-hydroxycamphor, and the residues that line the active sites of both enzymes are similar including the pre-eminent Tyr96 residue. However, Met98 and Leu253 in CYP101D2 replace Phe98 and Val247 in CYP101A1, and camphor binding only results in a maximal change in the spin state to 40 % high-spin. Substitutions at Tyr96, Met98 and Leu253 in CYP101D2 reduced both the spin state shift on camphor binding and the camphor oxidation activity. The Tyr96Ala mutant increased the affinity of CYP101D2 for hydrocarbon substrates including adamantane, cyclooctane, hexane and 2-methylpentane. The monooxygenase activity of the Tyr96Ala variant towards alkane substrates was also enhanced compared with the wild-type enzyme. The crystal structure of the substrate-free form of this variant shows the enzyme in an open conformation (PDB: 4DXY), similar to that observed with the wild-type enzyme (PDB: 3NV5), with the side chain of Ala96 pointing away from the heme. Despite this, the binding and activity data suggest that this residue plays an important role in substrate binding, evidencing that the enzyme probably undergoes catalysis in a more closed conformation, similar to those observed in the crystal structures of CYP101A1 (PDB: 2CPP) and CYP101D1 (PDB: 3LXI).  相似文献   

9.
Catalytic activities toward benzphetamine and 7-ethoxycoumarin of 11 distal mutants, 9 proximal mutants, and 3 aromatic mutants of rat liver cytochrome P-450d were studied. A distal mutant Thr319Ala was not catalytically active toward benzphetamine, while this mutant retained activity toward 7-ethoxycoumarin. Distal mutants Gly316Glu, Thr319Ala, and Thr322Ala displayed higher activities (kcat/Km) toward 7-ethoxycoumarin that were 2.4-4.7-fold higher than that of the wild-type enzyme. Although kcat/Km values of four multiple distal mutants toward benzphetamine were less than half that of the wild type, activities of these mutants toward 7-ethoxycoumarin were almost the same as or higher than the wild-type activity toward this substrate. The distal double mutant Glu318Asp, Phe325Tyr showed 6-fold higher activity than the wild-type P-450d toward 7-ethoxycoumarin. Activities of the proximal mutants Lys453Glu and Arg455Gly toward both substrates were much lower (less than one-seventh) than the corresponding wild-type activities. Catalytic activities of three aromatic mutants, Phe425Leu, Pro427Leu, and Phe430Leu, toward benzphetamine were less than 7% of that of the wild type, while the activities of these aromatic mutants toward 7-ethoxycoumarin were more than 2.5 times higher than the wild-type activity toward this substrate. From these findings, in conjunction with a molecular model for P-450d, we suggest that (1) the relative importance to catalysis of various distal helix amino acids differs depending on the substrate and that these differences are associated with the size, shape, and flexibility of the substrate and (2) the proximal residue Lys453 appears to play a critical role in the catalytic activity of P-450d, perhaps by participating in forming an intermolecular electron-transfer complex.  相似文献   

10.
CYP73 enzymes are highly conserved cytochromes P450 in plant species that catalyse the regiospecific 4-hydroxylation of cinnamic acid to form precursors of lignin and many other phenolic compounds. A CYP73A1 homology model based on P450 experimentally solved structures was used to identify active site residues likely to govern substrate binding and regio-specific catalysis. The functional significance of these residues was assessed using site-directed mutagenesis. Active site modelling predicted that N302 and I371 form a hydrogen bond and hydrophobic contacts with the anionic site or aromatic ring of the substrate. Modification of these residues led to a drastic decrease in substrate binding and metabolism without major perturbation of protein structure. Changes to residue K484, which is located too far in the active site model to form a direct contact with cinnamic acid in the oxidized enzyme, did not influence initial substrate binding. However, the K484M substitution led to a 50% loss in catalytic activity. K484 may affect positioning of the substrate in the reduced enzyme during the catalytic cycle, or product release. Catalytic analysis of the mutants with structural analogues of cinnamic acid, in particular indole-2-carboxylic acid that can be hydroxylated with different regioselectivities, supports the involvement of N302, I371 and K484 in substrate docking and orientation.  相似文献   

11.
The conversion of cholesterol to 7alpha-hydroxycholesterol catalyzed by cytochrome P450 7A1 (CYP7A1) initiates the major pathway for cholesterol elimination in mammals. In the present work we focused on identification of determinants of the CYP7A1 substrate specificity inside the active site using a homology model with a novel P450-fold, site-directed mutagenesis, and substrate-binding and kinetic studies. Forty-one mutants, encompassing twenty-six amino acid residues, were generated and characterized, and of these, seven residues appear to determine cholesterol binding in the active site. In addition, four cholesterol derivatives were used as active site probes in the wild type and the seven mutant enzymes, and the spectral binding constants and products were analyzed. It was concluded that Asn288 in the I helix plays a key role in the P450-cholesterol contacts by hydrogen bonding to the steroid 3beta-hydroxyl, while Val280 and Ala284 are beside and the Trp283 is above the steroid nucleus orienting the cholesterol molecule. Leu360 and Ala358 between the K helix and the beta1-4 strand and Leu485 in the beta4 sheet-turn appear to define the size of the active site over the heme pyrrole ring A, thus limiting the orientation and size of the substrate at the steroid A ring. Additionally, the A358V mutant was found to form two new products, one being 7beta-hydroxycholesterol. Our data indicate that a tight fit of cholesterol in the enzyme active site is in part responsible for the high efficiency of cholesterol turnover by CYP7A1.  相似文献   

12.
We used the expression of chimeric proteins and point mutants to identify amino acids of the hepatic progesterone 21-hydroxylase P450IIC5 which are part of an epitope recognized by an inhibitory monoclonal antibody and which affect substrate binding. Three amino acids of P450IIC5 at positions 113, 115, and 118 were introduced into P450IIC4, which is 95% identical to P450IIC5. The resultant chimeric protein acquired binding of the monoclonal antibody 1F11, which is highly specific and inhibitory for P450IIC5. Point mutants in P450IIC4 showed that two of the three changes, T115S and N118K, contribute to the epitope recognized by this antibody. The T115S mutant bound the antibody weakly (Kd greater than 30 nM) whereas the N118K mutant bound the antibody as tightly as P450IIC5 (Kd less than or equal to 0.7 nM). Thus, residues 115 and 118 are located on the surface of these enzymes, and the Lys/Asn difference at amino acid 118 is largely responsible for the high degree of discrimination which this antibody exhibits between P450IIC5 and P450IIC4. The valine to alanine mutation at position 113 conferred to P450IIC4 a lower apparent Km for progesterone 21-hydroxylation. Because antibody binding was not affected by this mutation, it is tempting to speculate that this residue is buried in the protein where it exerts its effect on the catalytic activity by interaction with the substrate or alters the positions of residues of the active site. The close proximity of the epitope at positions 115 and 118 to Ala113 suggests that the inhibitory monoclonal antibody interferes with substrate binding.  相似文献   

13.
Baer BR  Kunze KL  Rettie AE 《Biochemistry》2007,46(41):11598-11605
Cytochrome P450s in the CYP4 family covalently bind their heme prosthetic group to a conserved acidic I-helix residue via an autocatalytic oxidation. This study was designed to evaluate the source of oxygen atoms in the covalent ester link in CYP4B1 enzymes labeled with [18O]glutamate and [18O]aspartate. The fate of the heavy isotope was then traced into wild-type CYP4B1 or the E310D mutant-derived 5-hydroxyhemes. Glutamate-containing tryptic peptides of wild-type CYP4B1 were found labeled to a level of 11-13% 18O. Base hydrolysis of labeled protein released 5-hydroxyheme which contained 12.8 +/- 1.9% 18O. Aspartate-containing peptides of the E310D mutant were labeled with 6.0-6.5% 18O, but as expected, no label was transmitted to recovered 5-hydroxyheme. These data demonstrate that the oxygen atom in 5-hydroxyheme derived from wild-type CYP4B1 originates in Glu310. Stoichiometric incorporation of the heavy isotope from the wild-type enzyme supports a perferryl-initiated carbocation mechanism for covalent heme formation in CYP4B1.  相似文献   

14.
The cytochrome P450 monooxygenases (P450s) catalyze a vast array of oxygenation reactions that can be useful in biocatalytic applications. CYP101J2 from Sphingobium yanoikuyae is a P450 that catalyzes the hydroxylation of 1,8‐cineole. Here we report the crystallization and X‐ray structure elucidation of recombinant CYP101J2 to 1.8 Å resolution. The CYP101J2 structure shows the canonical P450‐fold and has an open conformation in the absence of substrate. Analysis of the structure revealed that CYP101J2, in the absence of substrate, forms a well‐ordered substrate‐binding channel that suggests a unique form of substrate guidance in comparison to other bacterial 1,8‐cineole‐hydroxylating P450 enzymes. Proteins 2017; 85:945–950. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
CYP152A1 is an unusual, peroxygenase enzyme that catalyzes the beta- or alpha-hydroxylation of fatty acids by efficiently introducing an oxygen atom from H2O2 to the fatty acid. To clarify the mechanistic roles of amino acid residues in this enzyme, we have used site-directed mutagenesis of residues in the putative distal helix and measured the spectroscopic and enzymatic properties of the mutant proteins. Initially, we carried out Lys-scanning mutagenesis of amino acids in this region to determine residues of CYP152A1 that might have a mechanistic role. Among the Lys mutants, only P243K gave an absorption spectrum characteristic of a nitrogenous ligand-bound form of a ferric P450. Further investigation of the Pro243 site revealed that a P243H mutant also exhibited a nitrogen-bound form, but that the mutants P243A or P243S did not. On the hydroxylation of myristic acid by the Lys mutants, we observed a large decrease in activity for R242K and A246K. We therefore examined other mutants at amino acid positions 242 and 246. At position 246, an A246K mutant showed a roughly 19-fold lower affinity for myristic acid than the wild type. Replacing Ala246 with Ser decreased the catalytic activity, but did not affect affinity for the substrate. An A246V mutant showed slightly reduced activity and moderately reduced affinity. At position 242, an R242A showed about a fivefold lower affinity than the wild type for myristic acid. The Km values for H2O2 increased and Vmax values decreased in the order of wild type, R242K, and R242A when H2O2 was used; furthermore, Vmax/Km was greatly reduced in R242A compared with the wild type. If cumene hydroperoxide was used instead of H2O2, however, the Km values were not affected much by these substitutions. Together, our results suggest that in CYP152A1 the side chain of Pro243 is located close to the iron at the distal side of a heme molecule; the fatty acid substrate may be positioned near to Ala246 in the catalytic pocket, although Ala246 does not participate in hydrophobic interactions with the substrate; and that Arg242 is a critical residue for substrate binding and H2O2-specific catalysis.  相似文献   

16.
R O Juvonen  M Iwasaki  M Negishi 《Biochemistry》1992,31(46):11519-11523
Cytochrome b5 stimulates the coumarin 7-hydroxylation activity of P450coh. A mutation of Arg-129 in P450coh, however, abolishes the stimulation. Moreover, this mutant P450coh binds loosely to cytochrome b5-conjugated Sepharose 4B, whereas wild-type P450coh binds tightly. Consistent with this, the mutation increases the Ka value for b5 binding approximately 6-fold. The identity of residue 209 also alters the stimulation of the activity of P450coh depending on the type of the substrates used and products formed. Coumarin 7-hydroxylation activity is greatly stimulated by cytochrome b5 only when Phe is at position 209, while cytochrome b5 stimulates testosterone hydroxylation activity of P450coh in which Phe, Asn, Ser or Lys substitutes residue 209. P450coh changes its rate of hydrogen peroxide formation depending on the identity of residue 209 and substrate used. Cytochrome b5 decreases the hydrogen peroxide formation of some P450coh whose activities are stimulated by the cytochrome; however, the decrease does not always result in stimulating the activity. The results indicate, therefore, that residues 129 and 209 play different roles in stimulating P450coh activity by cytochrome b5; Arg-129 is a key residue in the cytochrome b5-binding domain and is essential for the stimulation. Residue 209, however, alters the efficiency of electron transport for substrate oxidation as a residue which resides near the sixth ligand of heme and in the substrate-binding site.  相似文献   

17.
Recently we found that CYP4B1, and several other members of the CYP4 family of enzymes, are covalently linked to their prosthetic heme group through an ester linkage. In the current study, we mutated a conserved CYP4 I-helix residue, E310 in rabbit CYP4B1, to glycine, alanine, and aspartate to examine the effect of these mutations on the extent of covalent heme binding and catalysis. All mutants expressed well in insect cells and were isolated as a mixture of monomeric and dimeric forms as determined by LC/ESI-MS of the intact proteins. Rates of metabolism decreased in the order E310 > A310 > G310 > D310, with the A310 and G310 mutants exhibiting alterations in regioselectivity for omega-1 and omega-2 hydroxylation of lauric acid, respectively. In marked contrast to the wild-type E310 enzyme, the G310, A310, and D310 mutants did not bind heme covalently. Uniquely, the acid-dissociable heme obtained from the D310 mutant contained an additional 16 amu relative to heme and exhibited the same chromatographic behavior as the monohydroxyheme species released upon base treatment of the covalently linked wild-type enzyme. Expression studies with H(2)(18)O demonstrated incorporation of the heavy isotope from the media into the monohydroxyheme isolated from the D310 mutant at a molar ratio of approximately 0.8:1. These data show (i) that E310 serves as the site of covalent attachment of heme to the protein backbone of rabbit CYP4B1; (ii) this I-helix glutamate residue influences substrate orientation in the active site of CYP4B1; and (iii) the mechanism of covalent heme attachment most likely involves a carbocation species located on the porphyrin.  相似文献   

18.
A multifamily sequence alignment of the rabbit CYP4A members with the known structure of CYP102 indicates amino acid differences falling within the so-called substrate recognition site(s) (SRS). Chimeric proteins constructed between CYP4A4 and CYP4A7 indicate that laurate activity is affected by the residues within SRS1 and prostaglandin activity is influenced by SRS2-3. Site-directed mutant proteins of CYP4A7 found laurate and arachidonate activity markedly diminished in the R90W mutant (SRS1) and somewhat decreased in W93S. While PGE(1) activity was only slightly increased, the mutant proteins H206Y and S255F (SRS2-3), on the other hand, exhibited remarkable increases in laurate and arachidonate metabolism (3-fold) above wild-type substrate metabolism. Mutant proteins H206Y, S255F, and H206Y/S255F but not R90W/W93S, wild-type CYP4A4, or CYP4A7 metabolized arachidonic acid in the absence of cytochrome b(5). Stopped-flow kinetic experiments were performed in a CO-saturated environment performed to estimate interaction rates of the monooxygenase reaction components. The mutant protein H206Y, which exhibits 3-fold higher than wild-type substrate activity, interacts with CPR at a rate at least 10 times faster than that of wild-type CYP4A7. These experimental results provide insight regarding the residues responsible for modulation of substrate specificity, affinity, and kinetics, as well as possible localization within the enzyme structure based on comparisons with homologous, known cytochrome P450 structures.  相似文献   

19.
Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.  相似文献   

20.
Our previous chemical modification and cross-linking studies identified some positively charged amino acid residues of cytochrome P450scc that may be important for its interaction with adrenodoxin and for its functional activity. The present study was undertaken to further evaluate the role of these residues in the interaction of cytochrome P450scc with adrenodoxin using site-directed mutagenesis. Six cytochrome P450scc mutants containing replacements of the surface-exposed positively charged residues (Lys103Gln, Lys110Gln, Lys145Gln, Lys394Gln, Lys403Gln, and Lys405Gln) were expressed in E. coli cells, purified as a substrate-bound high-spin form, and characterized as compared to the wild-type protein. The replacement of the surface Lys residues does not dramatically change the protein folding or the heme pocket environment as judged from limited proteolysis and spectral studies of the cytochrome P450 mutants. The replacement of Lys in the N-terminal sequence of P450scc does not dramatically affect the activity of the heme protein. However, mutant Lys405Gln revealed rather dramatic loss of cholesterol side-chain cleavage activity, efficiency of enzymatic reduction in a reconstituted system, and apparent dissociation constant for adrenodoxin binding. The present results, together with previous findings, suggest that the changes in functional activity of mutant Lys405Gln may reflect the direct participation of this amino acid residue in the electrostatic interaction of cytochrome P450scc with its physiological partner, adrenodoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号