首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 305 毫秒
1.
2.
Stylar riboncleases (RNases) are associated with gametophytic self-incompatibility in two plant families, the Solanaceae and the Rosaceae. The self-incompatibility-associated RNases (S-RNases) of both the Solanaceae and the Rosaceae were recently reported to belong to the T2 RNase gene family, based on the presence of two well-conserved sequence motifs. Here, the cloning and characterization of S-RNase genes from two species of Rosaceae, apple (Malus × domestica) and Japanese pear (Pyrus serotina) is described and these sequences are compared with those of other T2-type RNases. The S-RNases of apple specifically accumulated in styles following maturation of the flower bud. Two cDNA clones for S-RNases from apple, and PCR clones encoding a further two apple S-RNases as well as two Japanese pear S-RNases were isolated and sequenced. The deduced amino acid sequences of the rosaceous S-RNases contained two conserved regions characteristic of the T2/S-type RNases. The sequences showed a high degree of diversity, with similarities ranging from 60.4% to 69.2%. Interestingly, some interspecific sequence similarities were higher than those within a species, possibly indicating that diversification of S-RNase alleles predated speciation in the Rosaceae. A phylogenetic tree of members of the T2/S-RNase superfamily in plants was obtained. The rosaceous S-RNases formed a new lineage in the tree that was distinct from those of the solanaceous S-RNases and the S-like RNases. The findings suggested that self-incompatibility mechanisms in Rosaceae and Solanaceae are similar but arose independently in the course of evolution.  相似文献   

3.
The full-length cDNAs of eight S ribonucleases (S-RNases) were cloned from stylar RNA of European pear cultivars that could not be characterized by the cleaved amplified polymorphic sequences (CAPS) marker system for genotyping European pear cultivars harboring nine S alleles Sa, Sb, Sd, Se, Sh, Sk, Sl, Sq, and Sr. Comparison of the nucleotide sequences between these cDNAs and six putative S-RNase alleles previously amplified by genomic PCR revealed that five corresponded to the putative Sc-, Si-, Sm-, Sn-, and Sp-RNase alleles and the other three corresponded new S-RNase alleles (designated as putative Sg-, Ss-, and St-RNase alleles). Genomic PCR with a new set of primers was used to amplify 17 S-RNase alleles: 1906 bp (Sg), 1642 bp (St), 1414 bp (Sl), ca. 1.3 kb (Sk and Sq), 998 bp (Se), 440 bp (Sb), and ca. 350 bp (Sa, Sc, Sd, Sh, Si, Sm, Sn, Sp, Sr, and Ss). Among them, S-RNase alleles of similar size were discriminated by digestion with 11 restriction endo-nucleases. The PCR amplification of 17 S-RNase alleles following digestion with the restriction endonucleases provided a new CAPS marker system for rapid S-genotyping of European pear cultivars harboring 17 S alleles. Using the CAPS analysis, Sc, Sg, Si, Sm, Sn, Sp, Ss, and St alleles were found in 32 cultivars, which were classified into 23 S-genotypes.  相似文献   

4.
Stylar riboncleases (RNases) are associated with gametophytic self-incompatibility in two plant families, the Solanaceae and the Rosaceae. The self-incompatibility-associated RNases (S-RNases) of both the Solanaceae and the Rosaceae were recently reported to belong to the T2 RNase gene family, based on the presence of two well-conserved sequence motifs. Here, the cloning and characterization of S-RNase genes from two species of Rosaceae, apple (Malus × domestica) and Japanese pear (Pyrus serotina) is described and these sequences are compared with those of other T2-type RNases. The S-RNases of apple specifically accumulated in styles following maturation of the flower bud. Two cDNA clones for S-RNases from apple, and PCR clones encoding a further two apple S-RNases as well as two Japanese pear S-RNases were isolated and sequenced. The deduced amino acid sequences of the rosaceous S-RNases contained two conserved regions characteristic of the T2/S-type RNases. The sequences showed a high degree of diversity, with similarities ranging from 60.4% to 69.2%. Interestingly, some interspecific sequence similarities were higher than those within a species, possibly indicating that diversification of S-RNase alleles predated speciation in the Rosaceae. A phylogenetic tree of members of the T2/S-RNase superfamily in plants was obtained. The rosaceous S-RNases formed a new lineage in the tree that was distinct from those of the solanaceous S-RNases and the S-like RNases. The findings suggested that self-incompatibility mechanisms in Rosaceae and Solanaceae are similar but arose independently in the course of evolution.  相似文献   

5.
Self-incompatibility has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, i.e., the S-RNase gene and the pollen-expressed SFB/SLF (S-haplotype-specific F-box/S-locus F-box) gene. However, the SFB gene in Japanese plum (Prunus salicina Lindl.) has not yet been identified. We determined eight novel sequences homologous to the SFB genes of other Prunus species and named these sequences PsSFB. The gene structure of the SFB genes and the characteristic domains in deduced amino acid sequences were conserved. Three sequences from 410 to 2,800 bp of the intergenic region between the PsSFB sequences and the S-RNase alleles were obtained. The eight identified PsSFB sequences showed S-haplotype-specific polymorphism, with 74–83% amino acid identity. These alleles were exclusively expressed in the pollen. These results suggest that the PsSFB alleles are the pollen S-determinants of GSI in Japanese plum. Nucleotide sequence data reported are available in the NCBI database under the accession numbers DQ849084–DQ849090 and DQ849118.  相似文献   

6.
Summary We have identified three alleles of the S-locus controlling self-incompatibility and their associated pistil proteins in Petunia inflata, a species that displays monofactorial gametophytic self-incompatibility. These S-allele-associated proteins (S-proteins) are pistil specific, and their levels are developmentally regulated. The amino-terminal sequences determined for the three S-proteins are highly conserved and show considerable homology to those of S-proteins from Petunia hybrida, Nicotiana alata and Lycopersicon peruvianum, three other species of the Solanaceae that also exhibit gametophytic self-incompatibility. cDNA clones encoding the three S-proteins were isolated and sequenced. Comparison of their deduced amino acid sequences reveals an average homology of 75.6%, with conserved and variable residue interspersed throughout the protein. Of the 137 conserved residues, 53 are also conserved in the N. alata S-proteins studies so far; of the 64 variable residues, 29 were identified as hypervariable based on calculation of the Similarity Index. There is only one hypervariable region of significant length, and it consists of eight consecutive hypervariable residues. This region correspond approximately to the hypervariable region HV2 identified in N. alata S-proteins. Of the two classes of N. alata S-proteins previously identified, one class exhibits greater homology to the three P. inflata S-proteins reported here than to the other class of N. alata S-proteins.  相似文献   

7.
8.
Summary We have isolated and sequenced cDNAs for S2- and S3-alleles of the self-incompatibility locus (S-locus) in Solanum chacoense Bitt., a wild potato species displaying gametophytic self-incompatibility. The S2-and S3-alleles encode pistil-specific proteins of 30 kDa and 31 kDa, respectively, which were previously identified based on cosegregation with their respective alleles in genetic crosses. The amino acid sequence homology between the S2- and S3-proteins is 41.5%. This high degree of sequence variability between alleles is a distinctive feature of the S-gene system. Of the 31 amino acid residues which were previously found to be conserved among three Nicotiana alata S-proteins (S2, S3, and S6) and two fungal ribonucleases (R Nase T2 and R Nase Rh), 27 are also conserved in the S2- and S3-proteins of S. chacoense. These residues include two histidines implicated in the active site of the R Nase T2, six cysteines, four of which form disulfide bonds in R Nase T2, and hydrophobic residues which might form the core structure of the protein. The finding that these residues are conserved among S-proteins with very divergent sequences suggests a functional role for the ribonuclease activity of the S-protein in gametophytic self-incompatibility.  相似文献   

9.
The cultivated petunia (Petunia hybrida) has been a popular system in which to study genetic, physiological and biochemical aspects of gametophytic self-incompatibility. As with other members of the Solanaceae a number of S-RNase genes have been isolated for functional S -alleles. We have identified S-RNase sequences for two additional functional S -alleles, Svand S3. These alleles are more similar to alleles from other families of the Solanaceae (Nicotiana and Solanum) than to any petunia alleles reported previously. The total number of S -alleles in P. hybrida is at least ten in spite of its cultivated origin. However, most cultivars of P. hybrida are in fact self-compatible and this appears to arise from the prominence of a single previously described allele So. The implications of this observation for the origin of self-compatibility in P. hybrida are discussed. The S -locus of P. hybrida has recently been mapped using an indirect method involving T-DNA insertions. Seven T-DNA insertions that were previously shown to be closely linked to theS -locus were physically mapped on the long arm of chromosome III using fluorescent in-situ hybridization. The most tightly linked T-DNA insertions are in a sub-centromeric position. This is consistent with the centric fragments of P. inflata obtained by irradiation mutagenesis that carry additional S -loci and confer a pollen-part mutant phenotype. An S -linked restriction fragment length polymorphism (RFLP) marker, CP100 was used to confirm this chromosomal assignment and has provided evidence for S -locus synteny in the Solanaceae.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号