首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
两种扁颅蝠回声定位叫声的比较   总被引:9,自引:1,他引:8  
对扁颅蝠 (Tylonycterispachypusa)和褐扁颅蝠 (T robustula)在飞行状态下的回声定位叫声进行了比较研究。结果表明 ,2种扁颅蝠的回声定位叫声的声谱图均呈调频 (FM)型 ,且波形相似 ;但叫声的最低频率、最高频率和主频率差异极显著 (P <0 0 1)。扁颅蝠的频率范围较高 ,为 6 2 4~ 91 6kHz ,主频率为 (76 5± 2 1)kHz ;褐扁颅蝠的频率范围较低 ,为 4 2 7~ 72 4kHz ,主频率为 (49 2± 1 8)kHz ;而 2种蝙蝠的声脉冲时程、声脉冲间隔和声脉冲重复率差异不显著 (P >0 0 5 )。回声定位叫声差异与其体型、所处的生境有关  相似文献   

2.
本研究于 2 0 0 2年 5月初至 2 0 0 3年 9月中旬在北京房山区霞云岭四合村蝙蝠洞进行 ,分析了共栖同一山洞四种蝙蝠的形态特征、食性和回声定位信号。大足鼠耳蝠食谱中以宽鳍等三种鱼为主 (体积百分比为5 3% ) ,回声定位主频 4 1 87± 1 0 7kHz;马铁菊头蝠主要掠捕鳞翅目昆虫 (73% ) ,恒频叫声主频 74 70± 0 13kHz ;中华鼠耳蝠以近地面或在地表活动的鞘翅目昆虫步甲类和埋葬甲类为主要食物 (6 5 4 % ) ,声脉冲主频较低 35 73± 0 92kHz;白腹管鼻蝠捕食花萤总科和瓢虫科等鞘翅目昆虫 (90 % ) ,回声定位信号主频为 5 9 4 7±1 5 0kHz。结果证实同地共栖四种蝙蝠种属特异的回声定位叫声和形态结构的差异 ,以及不同的捕食生境和捕食策略 ,导致取食生态位分离是四种蝙蝠同地共栖的原因  相似文献   

3.
普通长翼蝠食性结构及其回声定位与体型特征   总被引:1,自引:0,他引:1  
Hu KL  Wei L  Zhu TT  Wang XZ  Zhang LB 《动物学研究》2011,32(2):163-167
在普通长翼蝠(Miniopterus fuliginosus)的捕食区内用灯诱法和网捕法调查潜在食物(昆虫)种类; 用粪便分析法鉴定普通长翼蝠的食物组成,发现其主要捕食体型较大的鳞翅目和鞘翅目昆虫,体积百分比分别为55%和38%.普通长翼蝠具有相对狭长的翼,翼展比为6.94 ± 0.13;翼载为(9.85 ± 0.83)N/m2,相对较大.飞行状态下普通长翼蝠的回声定位叫声为调频下扫型,声脉冲时程为(1.45 ± 0.06)ms,脉冲间隔为(63.08 ± 21.55)ms,主频较低,为(44.50 ± 2.26)kHz.研究表明,普通长翼蝠的形态特征和回声定位特征与其捕食行为有着密切的联系.  相似文献   

4.
通过对短嘴金丝燕(Aerodramus brevirostris)的传统遮挡放飞实验和飞行行为的观察,研究短嘴金丝燕回声定位的机制,同时利用SONY MD录音并用Cool Edit2.1软件进行声波分析,证明了该物种是能利用回声定位的鸟类。该物种定位的声波主频较低,所以其定位能力没有蝙蝠(Chiroptera)那样精确,个体主要还是依靠视觉定位,只有在全黑的情况下才利用声音定位的。  相似文献   

5.
采用超声监测仪录制超声信号和细胞外电生理记录下丘神经元的频率调谐曲线(frequency tuningcurqes,FTCs)的方法,探讨了大蹄蝠(Hipposideros armiger)回声定位信号与下丘(inferior colliculus,IC)神经元频率调谐之间的相关性.结果发现,大蹄蝠回声定位叫声为恒频-调频(consrant frequency-frequenevmodulated,CF-FM)信号,一般含有2-3个谐波,第二谐波为其主频,cF成分频率(Mean±SD,n=18)依次为:(33.3 4±0.2)、(66.5±0.3)、(99.4 4±0.5)kHz;电生理实验共获得72个神经元的频率调谐曲线,Q10-dB值的范围是0.5-95.4(9.2±14.6,rg=72),最佳频率(best frequency,BF)在回声定位主频附近的神经元具有尖锐的频率调谐特性.结果表明,大蹄蝠回声定位信号与下丘神经元频率调谐存在相关性,表现为最佳频率在回声定位信号主频附近的神经元频率调谐曲线的Q10-dB值较大,具有很强的频率分析能力.  相似文献   

6.
本研究于2006 年5 ~ 8 月在桂林市七星公园七星岩洞进行,比较分析了共栖2 科(蹄蝠科和蝙蝠科)6 种共75 只蝙蝠的回声定位信号和翼型特征。普氏蹄蝠的回声定位叫声为短而多谐波的CF/ FM 型,主频率为61.2±0.8 kHz, 具有高翼载、低翼展比和中等翼尖指数; 大蹄蝠的回声定位叫声为单CF/ FM 型,主频率为68. 6 ±0.7 kHz,具有高翼载、低翼展比和中等翼尖指数;中蹄蝠的回声定位叫声为单CF / FM 型,主频率为85.2 ±0.5 kHz,具有中等翼载、低翼展比和中等翼尖指数;高颅鼠耳蝠的回声定位叫声为长带宽的FM 型,主频率为50.7 ±3.8 kHz,具有低翼载、中等翼展比和低翼尖指数;大足鼠耳蝠回声定位叫声为FM 型,主频率为39.9 ±3.2 kHz,具有中等翼载、低翼展比和高翼尖指数;绒山蝠回声定位叫声为短而多谐波的FM 型,主频率为49.0± 0. 4 kHz,具有高翼载、中等翼展比和低翼尖指数。经单因素方差分析表明,6 种蝙蝠之间绝大部分的形态和声音参数差异显著(One-way ANOVA,P < 0. 05)。以上结果说明,6 种同地共栖蝙蝠种属特异的回声定位叫声
和形态结构体现出了相互之间的生态位分离,从而降低了种间竞争压力,使得6 种蝙蝠能够同地共存。  相似文献   

7.
通过对吉林省长春市采集到的11只蝙蝠标本的外形、头骨、牙齿和阴茎骨进行测量与对照,鉴定为东方蝙蝠(Vespertilio sinensis),是吉林省翼手目新纪录.用实时录音的超声波仪录制其正常飞行状态下的回声定位声波.结果表明,东方蝙蝠发出短的、宽带的、多谐波的陡坡调频型回声定位声波,能量主要集中在第1谐波.起始频率为83.66±2.08 kHz,峰频为34.54±0.88 kHz,终止频率为24.78±0.41 kHz,带宽为58.84±2.10 kHz,声脉冲持续时间和声脉冲间隔分别为2.63±0.27 ms和61.67±7.5 ms.  相似文献   

8.
冯江  李振新  陈敏  刘颖  张喜臣  周江  张树义 《生态学报》2003,23(9):1712-1718
大足鼠耳蝠(Myotisricketti)是中国特有蝙蝠,其回声定位声波和捕食策略国内外均无报道,对大足鼠耳蝠该方面的研究报导是国内首次。大足鼠耳蝠体型较大,具有强大的后足,足上有强而有力的弯曲的爪,尾膜和距很长。大足鼠耳蝠回声定位声波为FM(调频)型,一般具有1~2个谐波,主频率较低(37.78±1.04kHz),调频带较宽(第一谐波频带宽为42.02±6.98kHz,第二谐波频带宽为25.79±7.89kHz),声脉冲时间较长(2.91±0.54ms),声脉冲间隔时间变化较大(32.30±15.10ms),能率环较高(11.27±5.84%);野外观察发现,大足鼠耳蝠主要在低水面上空飞行,利用大足从水面捕食猎物(拖网式捕食),猎物主要由鱼类组成。即分析和讨论了大足鼠耳蝠形态特征、回声定位特征和捕食策略的相互适应性。  相似文献   

9.
三种共栖蝙蝠的回声定位信号特征及其夏季食性的比较   总被引:3,自引:2,他引:1  
2005年6至9月,对桂林市郊区两个山洞中高颅鼠耳蝠(Myotissiligorensis)、菲菊头蝠(Rhinolo-phuspusillus)和黑髯墓蝠(Taphozousmelanopogon)的回声定位叫声特征和食性进行分析,并结合其形态特征与野外观察,推断其捕食生境和捕食策略。研究结果发现:黑髯墓蝠体型最大,声音特征属短调频型多谐波,一般为4个谐波,能量主要集中在第二谐波上,主频率为(32·84±1·17)kHz,选择鞘翅目和双翅目昆虫为主要食物;高颅鼠耳蝠(长调频型)和菲菊头蝠(长恒频-调频型),体型都较小,主频率分别是(84·44±8·13)kHz和(110·78±1·65)kHz,以双翅目昆虫为主要食物;而菲菊头蝠则以鞘翅目和双翅目昆虫为主要食物。上述结果证明,高颅鼠耳蝠、菲菊头蝠和黑髯墓蝠在声音和食物组成等方面出现了明显分化。  相似文献   

10.
普通长翼蝠福建亚种不同行为状态下回声定位声波研究   总被引:6,自引:0,他引:6  
普通长翼蝠福建亚种为中国的地方性亚种。采用超声波监听仪和Batsound3 10软件对其回声定位声波进行录制和分析,发现回声定位声波为中等长度的FM型,伴有1~2个谐波,声波主频率为49 35±4 24kHz,一次完整声波的声脉冲时间为3 46±1 63ms,两次声波间的声脉冲间隔为96 09±33 84ms。分析表明,普通长翼蝠福建亚种在飞行和手持状态下的回声定位声波声脉冲时间均小于其悬挂状态,飞行状态下声脉冲间隔时间是各种状态中较小的,而飞行状态下回声定位声波的主频率则为所有状态中最高的,说明蝙蝠在飞行中要面临复杂的环境,辨别较多的障碍物,因此利用高频率声波进行回声定位,才能实现灵活复杂的飞行。  相似文献   

11.
南蝠回声定位叫声的分析   总被引:11,自引:1,他引:10  
蝙蝠科是翼手目中种类最繁多、分布最广泛、进化最成功的科之一 ,全球共有 42属 35 5种(Nowak ,1991)。该类群的大多数物种都以超声波回声定位来进行捕食 ,其回声定位行为的多样性以及捕食策略的多样性 ,一直都是动物生态学中的研究热点。南蝠 (Iaio)属蝙蝠科南蝠属 ,为单型种 ,主要分布于我国 (罗蓉等 ,1993)。它是蝙蝠科中体形最大者 ,以前对其生态学方面的研究非常少 ,而对其回声定位的研究则未见报道。南蝠捕食时的叫声与飞行及悬挂状态下的叫声的基本特征一致 (声谱图及谐波等 ) ,仅在叫声次数上有一定差异。因此本文将录制南…  相似文献   

12.
  1. The pulse-like clicking sounds made by odontocetes for echolocation (biosonar) can be roughly classified by their frequency characteristics into narrow-band high-frequency (NBHF) clicks with a sharp peak at around 130 kHz and wide-band (WB) clicks with a moderate peak at 30–100 kHz. Structural differences in the sound-producing organs between NBHF species and WB species have not been comprehensively discussed, nor has the formation of NBHF and WB clicks.
  2. A review of the sound-producing organs, including the latest findings, could lead to a new hypothesis about the sound production mechanisms. In the current review, data on echolocation click characteristics and on the anatomical structure of the sound-producing organs were compared in 33 species (14 NBHF species and 19 WB species).
  3. We review interspecific information on the characteristics of click frequencies and data from computed tomography scans and morphology of the sound-producing organs, accumulated in conventional studies. The morphology of several characteristic structures, such as the melon, the dense connective tissue over the melon (the ‘porpoise capsule’), and the vestibular sacs, was compared interspecifically.
  4. Interspecific comparisons suggest that the presence or absence of the porpoise capsule is unlikely to affect echolocation frequency. Folded structures in the vestibular sacs, features that have been overlooked until now, are present in most species with NBHF sound production and not in WB species; the vestibular sacs are therefore likely to be important in determining echolocation click frequency characteristics. The acoustical properties of the shape of the melon and vestibular sacs are important topics for future investigations about the relationship between anatomical structure and sound-producing mechanisms for echolocation clicks.
  相似文献   

13.
Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (a) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (b) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1,250 Hz, after which response amplitudes declined until extinguished beyond 2,500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well suited to detect their unique echolocation signals.  相似文献   

14.
1.  Most studies examining interactions between insectivorous bats and tympanate prey use the echolocation calls of aerially-feeding bats in their analyses. We examined the auditory responses of noctuid (Eurois astricta) and notodontid (Pheosia rimosa) moth to the echolocation call characteristics of a gleaning insectivorous bat, Myotis evotis.
2.  While gleaning, M. Evotis used short duration (mean ± SD = 0.66 ± 0.28 ms, Table 2), high frequency, FM calls (FM sweep = 80 – 37 kHz) of relatively low intensity (77.3 + 2.9, –4.2 dB SPL). Call peak frequency was 52.2 kHz with most of the energy above 50 kHz (Fig. 1).
3.  Echolocation was not required for prey detection or capture as calls were emitted during only 50% of hovers and 59% of attacks. When echolocation was used, bats ceased calling 324.7 (±200.4) ms before attacking (Fig. 2), probably using prey-generated sounds to locate fluttering moths. Mean call repetition rate during gleaning attacks was 21.7 (±15.5) calls/s and feeding buzzes were never recorded.
4.  Eurois astricta and P. rimosa are typical of most tympanate moths having ears with BFs between 20 and 40 kHz (Fig. 3); apparently tuned to the echolocation calls of aerially-feeding bats. The ears of both species respond poorly to the high frequency, short duration, faint stimuli representing the echolocation calls of gleaning M. evotis (Figs. 4–6).
5.  Our results demonstrate that tympanate moths, and potentially other nocturnal insects, are unable to detect the echolocation calls typical of gleaning bats and thus are particularly susceptible to predation.
  相似文献   

15.
16.
Summary Bats of the speciesNoctilio albiventris emit short-constant frequency/frequency modulated (short-CF/FM) pulses with a CF component frequency at about 75 kHz. Bats sitting on a stationary platform were trained to discriminate target distance by means of echolocation. Loud, free-running artificial pulses, simulating the bat's natural CF/FM echolocation sounds or with systematic modifications in the frequency of the sounds, were presented to the bats during the discrimination trials. When the CF component of the artificial CF/FM sound was between 72 and 77 kHz, the bats shifted the frequency of the CF component of their own echolocation sounds toward that of the artificial pulse, tracking the frequency of the artificial CF component.Bats flying within a large laboratory flight cage were also presented with artificial pulses. Bats in flight lower the frequency of their emitted pulses to compensate for Doppler shifts caused by their own flight speed and systematically shift the frequency of their emitted CF component so that the echo CF frequency returns close to that of the CF component of the artificial CF/FM pulse, over the frequency range where tracking occurs.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

17.
Summary Bats of the speciesNoctilio albiventris were trained to detect the presence of a target or to discriminate differences in target distance by means of echolocation. During the discrimination trials, the bats emitted pairs of pulses at a rate of 7–10/s. The first was an 8 ms constant frequency (CF) signal at about 75 kHz. This was followed after about 28 ms by a short-constant frequency/ frequency modulated (short-CF/FM) signal composed of a 6 ms CF component at about 75 kHz terminating in a 2 ms FM component sweeping downward to about 57 kHz. There was no apparent difference in the pulse structure or emission pattern used for any of the tasks. The orientation sounds of bats flying in the laboratory and hunting prey under natural conditions follow the same general pattern but differ in interesting ways.The bats were able to discriminate a difference in target distance of 13 mm between two simultaneously presented targets and of 30 mm between single sequentially presented targets around an absolute distance of 35 cm, using a criterion of 75% correct responses.The bats were unable to detect the presence of the target or to discriminate distance in the presence of continuous white noise of 54 dB or higher SPL. Under conditions of continuous white noise, the bats increased their pulse repetition rate and the relative proportion of CF/FM pulses.The bats required a minimum of 1–2 successive CF/FM pulse-echo pairs for target detection and 2–3 to discriminate a 5 cm difference in distance. When the distance discrimination tasks were made more difficult by reducing the difference in distance between the two targets the bats needed to integrate information from a greater number of successive CF/FM pulse-echo pairs to make the discrimination.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

18.
Summary The pallid bat (Antrozous p. pallidus) uses passive sound localization to capture terrestrial prey. This study of captive pallid bats examined the roles of echolocation and passive sound localization in prey capture, and focused on their spectral requirements for accurate passive sound localization.Crickets were used as prey throughout these studies. All tests were conducted in dim, red light in an effort to preclude the use of vision. Hunting performance did not differ significantly in red light and total darkness, nor did it differ when visual contrast between the terrestrial prey and the substrate was varied, demonstrating that the bats did not use vision to locate prey.Our bats apparently used echolocation for general orientation, but not to locate prey. They did not increase their pulse emission rate prior to prey capture, suggesting that they were not actively scanning prey. Instead, they required prey-generated sounds for localization. The bats attended to the sound of walking crickets for localization, and also attacked small, inanimate objects dragged across the floor. Stationary and/or anesthetized crickets were ignored, as were crickets walking on substrates that greatly attenuated walking sounds. Cricket communication sounds were not used in prey localization; the bats never captured stationary, calling crickets.The accuracy of their passive sound localization was tested with an open-loop passive sound localization task that required them to land upon an anesthetized cricket tossed on the floor. The impact of a cricket produced a single 10–20 ms duration sound, yet with this information, the bats were able to land within 7.6 cm of the cricket from a maximum distance of 4.9 m. This performance suggests a sound localization accuracy of approximately ±1° in the horizontal and vertical dimensions of auditory space. The lower frequency limit for accurate sound localization was between 3–8 kHz. A physiological survey of frequency representation in the pallid bat inferior colliculus suggests that this lower frequency limit is around 5 kHz.  相似文献   

19.
Summary Bats of the speciesNoctilio albiventris, trained to discriminate differences in target distance, emitted pairs of pulses at a rate of 7–10/s, the first a constant frequency (CF) pulse of about 8 ms duration and 75 kHz frequency, followed after about 28 ms by a CF/FM pulse having a 6 ms, 75 kHz CF component that terminates in a 2 ms FM sweep to about 57 kHz.Loud free-running artificial pulses, simulating the bat's natural CF/FM echolocation sound, interfered with distance discrimination at repetition rates exceeding 5/s. Systematic modifications in the temporal and frequency structure of the artificial pulses resulted in orderly changes in the degree of interference. Artificial pulses simulating the natural CF or FM components alone had no effect, nor did 10/s white noise pulses, although constant white noise of the same intensity masked the behavior.Interference occurred when the CF of the artificial pulses was between 52 and 77 kHz, ending with a downward FM sweep of 25 kHz from the CF. For interference to occur there was a much more critical requirement that the FM sweep begin at approximately the frequency of the CF component. The FM sweep needed to be 11 kHz or greater bandwidth. Interference occurred when the duration of the CF component of the CF/FM artificial pulse was between 2 and 30 ms, with maximal effect between 10 and 20 ms. However, a brief (2.0 ms) CF signal 2–27 ms before an isolated FM signal was as effective as a continuous CF component of the same duration.When coupled with the bat's own emissions, artificial CF/FM pulses interfered if they occurred after the bat's CF/FM pulse and before the next natural emission. A 2 ms FM sweep alone was effective in interfering with distance discrimination when it came 8–27 ms after the onset of the bat's own CF/FM pulse. Neither CF/FM nor FM artificial pulses interfered when they began during the bat's own emission. A 10 ms CF pulse alone had no effect at any time.These findings indicate thatN. albiventris uses both the CF and FM components of its short-CF/FM echolocation sound for distance discrimination. The CF onset activates a gating mechanism that, during a narrowly defined subsequent time window, enables the nervous system to process FM pulse-echo pairs for distance information, within a fairly broad frequency range, as long as the frequencies of the CF and the beginning of the FM sweep are nearly identical.Abbreviations CF constant frequency - FM frequency modulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号