首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
兼性甲烷氧化菌在新陈代谢上具有独一无二的特性:它们能够利用甲烷或一些含碳碳键的有机物作为唯一碳源和能源.甲基细胞菌属(Methylocella)、甲基孢囊菌属(Methylocystis)和甲基帽菌属(Methylocapsa)的一些菌株已经被确定为兼性甲烷氧化菌.它们都属于a-变形菌纲,能够像利用甲烷一样在大分子有机酸或乙醇里生长.本文全面系统地总结了兼性甲烷氧化菌的研究发展历史,推断出兼性甲烷氧化菌易在酸性环境富集生长;介绍了与之有相近功能的兼性甲烷氧化生物;浅析了其对多碳化合物的代谢机理;最后讨论了兼性甲烷氧化菌研究的现存问题和工程应用前景.  相似文献   

2.
近年来,随着经济的快速发展和人们对于资源需求的增长,化石燃料的使用越来越多,这一方面加剧了能源的过度消耗,另一方面导致了环境污染和温室效应加重。为了在保护环境的同时有效地利用资源,越来越多的研究集中在通过细胞工厂平台进行能源和化学品的生物合成。利用特定的微生物(如嗜甲烷菌、微藻和梭菌等)可以将温室气体和合成气中的碳一成分通过发酵过程转化为能源和化学品。本文中,笔者详细讨论了不同微生物转化3种碳一气体(CH_4、CO_2和CO)的生物代谢途径、关键合成酶、最终代谢产物和生物转化过程的优化及放大。  相似文献   

3.
马若潺  魏晓梦  何若 《生态学杂志》2017,28(6):2047-2054
甲烷生物氧化在全球大气甲烷平衡和温室气体的控制中起着重要作用.氧气是甲烷生物氧化过程中的重要影响因素之一.生境中氧浓度不仅影响好氧甲烷氧化菌的种群结构、活性及甲烷碳的分配,而且好氧甲烷氧化菌在不同氧浓度下具有不同的代谢途径.理解低氧生境中好氧甲烷氧化菌的缺氧耐受机理和甲烷生物氧化过程,对甲烷驱动型生态系统的碳循环和生物多样性有着重要意义.本文以好氧甲烷氧化菌为对象,综述了低氧生境中好氧甲烷氧化菌的活性及其种群结构、好氧甲烷氧化菌的缺氧耐受机理以及低氧生境中甲烷氧化菌与非甲烷氧化菌的关系,并对今后的研究方向进行了展望.  相似文献   

4.
一碳气体主要包括CO、CO_(2)和CH_(4)等,这些气体来源于陆地生物活动、工业废气以及气化合成气等,其中CO_(2)与CH_(4)是温室气体,对全球气候变化有着重要的影响。利用微生物进行一碳气体生物转化既可以解决废气排放的问题,又能生产燃料及多种化学品。近年来,运用CRISPR/Cas9等基因编辑技术对一碳气体利用微生物进行改造,是提高它们的产物得率、增加产物类型的重要途径。本文主要围绕甲烷营养菌、自养乙酸菌、一氧化碳营养菌等一碳气体利用微生物,综述了其生物学特性、好氧和厌氧代谢途径、代谢产物,以及常用的基因编辑技术(利用同源重组的基因中断技术、二类内含子ClosTron法、CRISPR/Cas基因编辑及以噬菌体重组酶介导的DNA大片段引入等)在它们中的应用,为后续相关研究提供参考。  相似文献   

5.
甲烷氧化菌及甲烷单加氧酶的研究进展   总被引:9,自引:0,他引:9  
韩冰  苏涛  李信  邢新会 《生物工程学报》2008,24(9):1511-1519
甲烷氧化菌是以甲烷作为唯一碳源和能源进行同化和异化代谢的微生物,其关键酶之一是甲烷单加氧酶(MMOs),可以在氧气的作用下催化甲烷等低碳烷烃或烯烃羟基化或环氧化,甲烷氧化菌在自然界碳循环和工业生物技术中具有重要的应用价值.因此,近20年来对于甲烷氧化菌和MMOs的研究一直倍受生物学家的关注.以下从现代生物技术的角度,对近年来国内外在甲烷氧化菌的分类与分布,MMOs的结构与功能、甲烷氧化菌与MMOs的基因工程等方面取得的研究成果进行了总结,全面综述了甲烷氧化菌及MMOs的应用基础研究现状,并对其今后的研究和应用方向提出了展望.  相似文献   

6.
甲烷氧化菌中的甲烷单加氧酶能够在生理条件下选择性地以甲烷和氧气为底物生成甲醇,麻省理工学院的Lippard教授称它为"神奇的生物分子机器"。本文重点对生物分子机器甲烷单加氧酶的结构、编码基因及调控机制、催化反应机理等进行了综述,此外也简要介绍了甲烷单加氧酶的产生菌甲烷氧化菌的研究历史及分类。生物分子机器甲烷单加氧酶可催化甲烷氧化成甲醇,不仅为甲醇的生产提供了一种新颖的生产方法,而且对生物分子机器的设计也有借鉴意义。  相似文献   

7.
生物修复技术被认为是氯代烃类污染物处理处置的最有效途径之一,而甲烷氧化菌在该领域表现出较大的应用潜力。近期研究发现,突破了仅能利用单碳化合物的局限,兼性甲烷氧化菌能够利用多种底物降解氯代烃,这一独特的新陈代谢特性,使其在污染物生物处置领域逐渐受到关注。结合本课题组研究成果,对甲烷氧化菌降解氯代烃进行了全面总结,主要包括:分析了不同菌株(纯菌株和混合菌株)对不同氯代烃的降解效果;比较了不同类型甲烷单加氧酶在不同底物体系中的活性表达和催化特性;总结了模型菌株甲基弯菌Methylosinus trichosporium OB3b降解氯代烃的动力学特性;概述了兼性甲烷氧化菌株降解氯代烃的特性及其应用潜力;最后讨论了甲烷氧化菌降解氯代烃存在的问题及未来发展方向。  相似文献   

8.
为了探究γ-变形菌纲 (Gammaproteobacteria) 甲烷氧化菌Methylomicrobium alcaliphilum 20Z的甲烷同化代谢过程。文中整合RNA-seq、LC-MS技术并结合13C标记策略对核酮糖单磷酸途径 (Ribulose monophosphate pathway) 及下游途径展开系统组学分析。M. alcaliphilum 20Z代谢物组定量分析表明Entner-Doudoroff (EDD) 途径的中间代谢物6-磷酸葡萄糖的浓度是(150.95±28.75) μmol/L,2-酮-3-脱氧-6-磷酸葡糖酸浓度低于质谱定量分析检测限,而Embden-Meyerhof-Parnas (EMP) 途径中果糖1,6-二磷酸、甘油醛-3-磷酸/二羟丙酮磷酸和磷酸烯醇式丙酮酸的浓度分别是 (1 142.02±302.88) μmol/L、(1 866.76±388.55) μmol/L和 (3 067.57±898.13) μmol/L。通过EDD和EMP途径的代谢物13C同位素动态富集研究,进一步揭示3位标记丙酮酸丰度是1位标记丙酮酸丰度的4~6倍。最后,基因表达比较分析发现EMP途径的关键基因 (如:fbaA、tpiA、gap和pykA) 的表达水平 (RPKM) 分别是2 479.2、2 493.9、2 274.6和1 846.0,而EDD途径中基因 (如:pgi、eda和edd) 的RPKM仅是263.8、341.2和225.4。综合上述结果阐明EMP途径才是M. alcaliphilum 20Z进行甲烷同化的关键通路。EMP途径代谢功能的全新阐述不但改变对Gammaproteobacteria甲烷氧化菌甲烷同化模式的传统认知,而且为甲烷高效生物催化转化提供重要的理论基础。  相似文献   

9.
严程  梅娟  赵由才 《生物工程学报》2022,38(4):1322-1338
好氧甲烷氧化菌能以甲烷作为碳源和能源,对全球甲烷消除的贡献率高达10%–20%,还能有效地合成有价值的甲烷来源生物产品。文中介绍了好氧甲烷氧化菌的甲烷氧化代谢机理,总结了好氧甲烷氧化菌在填埋场甲烷减排、煤矿通风气治理、合成生物产品、油气藏勘探等领域的实际应用功效和研究热点,即污染物去除和产品合成效率的影响因素。基于对甲烷氧化菌规模化培养方法的研究,本文认为加强培养过程中代谢产物对甲烷氧化菌活性和种群结构影响的研究,以及开发经济高效的替代培养基和培养技术的研究将有利于好氧甲烷氧化菌生物技术的应用推广。  相似文献   

10.
甲烷氧化菌是一类可以利用甲烷作为唯一碳源和能源的细菌,在全球变化和整个生态系统碳循环过程中起着重要的作用。近年来,对甲烷氧化菌的生理生态特征及其在自然湿地中的群落多样性研究取得了较大进展。在分类方面,疣微菌门、NC10门及两个丝状菌属甲烷氧化菌的发现使其分类体系得到了进一步的完善;在单加氧酶方面,发现甲烷氧化菌可以利用pM MO和sM MO两种酶进行氧化甲烷的第一步反应,Ⅱ型甲烷氧化菌中pM MO2的发现证实甲烷氧化菌可以利用这种酶氧化低浓度的甲烷;在底物利用方面,已经发现了越来越多的兼性营养型甲烷氧化菌,证实它们可以利用的底物比之前认为的更广泛,其中包括乙酸等含有碳碳键的化合物;在生存环境方面,能在不同温度、酸度和盐度的环境中生存的甲烷氧化菌不断被分离出来。全球自然湿地甲烷氧化菌群落多样性的研究目前主要集中在北半球高纬度的酸性泥炭湿地,Ⅱ型甲烷氧化菌Methylocystis、Methylocella和Methylocapsa是这类湿地主要的甲烷氧化菌类群,尤其以Methylocystis类群最为广泛,而Ⅰ型甲烷氧化菌尤其是Methylobacter在北极寒冷湿地中占优势。随着高通量测序时代的到来和新的分离技术的发展,对甲烷氧化菌的现有认识将面临更多的挑战和发展。  相似文献   

11.
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.  相似文献   

12.
Abundant natural gas reserves, along with increased biogas production, have prompted recent interest in harnessing methane as an industrial feedstock for the production of liquid fuels and chemicals. Methane can either be used directly for fermentation or first oxidized to methanol via biological or chemical means. Methanol is advantageous due to its liquid state under normal conditions. Methylotrophy, defined as the ability of microorganisms to utilize reduced one-carbon compounds like methane and methanol as sole carbon and energy sources for growth, is widespread in bacterial communities. However, native methylotrophs lack the extensive and well-characterized synthetic biology toolbox of platform microorganisms like Escherichia coli, which results in slow and inefficient design-build-test cycles. If a heterologous production pathway can be engineered, the slow growth and uptake rates of native methylotrophs generally limit their industrial potential. Therefore, much focus has been placed on engineering synthetic methylotrophs, or non-methylotrophic platform microorganisms, like E. coli, that have been engineered with synthetic methanol utilization pathways. These platform hosts allow for rapid design-build-test cycles and are well-suited for industrial application at the current time. In this review, recent progress made toward synthetic methylotrophy (including methanotrophy) is discussed. Specifically, the importance of amino acid metabolism and alternative one-carbon assimilation pathways are detailed. A recent study that has achieved methane bioconversion to liquid chemicals in a synthetic E. coli methanotroph is also briefly discussed. We also discuss strategies for the way forward in order to realize the industrial potential of synthetic methanotrophs and methylotrophs.  相似文献   

13.
Obligate methanotrophic bacteria can utilize methane, an inexpensive carbon feedstock, as a sole energy and carbon substrate, thus are considered as the only nature-provided biocatalyst for sustainable biomanufacturing of fuels and chemicals from methane. To address the limitation of native C1 metabolism of obligate type I methanotrophs, we proposed a novel platform strain that can utilize methane and multi-carbon substrates, such as glycerol, simultaneously to boost growth rates and chemical production in Methylotuvimicrobium alcaliphilum 20Z. To demonstrate the uses of this concept, we reconstructed a 2,3-butanediol biosynthetic pathway and achieved a fourfold higher titer of 2,3-butanediol production by co-utilizing methane and glycerol compared with that of methanotrophic growth. In addition, we reported the creation of a methanotrophic biocatalyst for one-step bioconversion of methane to methanol in which glycerol was used for cell growth, and methane was mainly used for methanol production. After the deletion of genes encoding methanol dehydrogenase (MDH), 11.6 mM methanol was obtained after 72 h using living cells in the absence of any chemical inhibitors of MDH and exogenous NADH source. A further improvement of this bioconversion was attained by using resting cells with a significantly increased titre of 76 mM methanol after 3.5 h with the supply of 40 mM formate. The work presented here provides a novel framework for a variety of approaches in methane-based biomanufacturing.  相似文献   

14.
Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy‐rich, yet the most efficient methane‐activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by‐products at a comparable rate and in near‐stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost‐effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep‐sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep‐sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full‐scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane‐oxidizing, sulfide‐generating mesocosm incubations. Metabolic activity required >~40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane‐dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth‐based communities were substantially streamlined and were dominated by Desulfotomaculum geothermicum. Fluorescence in situ hybridization microscopy with carbon cloth fibers revealed a novel spatial arrangement of anaerobic methanotrophs and sulfate reducing bacteria suggestive of an electronic coupling enabled by the artificial substrate. This system: 1) enables a more targeted manipulation of methane‐activating microbial communities using a low‐mass and sediment‐free substrate; 2) holds promise for the simultaneous consumption of a strong greenhouse gas and the generation of usable downstream products; and 3) furthers the broader adoption of uncultured, mixed microbial communities for biotechnological use.  相似文献   

15.
As one of the most abundant polymers in biosphere, lignin has attracted extensive attention as a kind of promising feedstock for biofuel and bio-based products. However, the utilization of lignin presents various challenges in that its complex composition and structure and high resistance to degradation. Lignin conversion through biological platform harnesses the catalytic power of microorganisms to decompose complex lignin molecules and obtain value-added products through biosynthesis. Given the heterogeneity of lignin, various microbial metabolic pathways are involved in lignin bioconversion processes, which has been characterized in extensive research work. With different types of lignin substrates (e.g., model compounds, technical lignin, and lignocellulosic biomass), several bacterial and fungal species have been proved to own lignin-degrading abilities and accumulate microbial products (e.g., lipid and polyhydroxyalkanoates), while the lignin conversion efficiencies are still relatively low. Genetic and metabolic strategies have been developed to enhance lignin biodegradation by reprogramming microbial metabolism, and diverse products, such as vanillin and dicarboxylic acids were also produced from lignin. This article aims at presenting a comprehensive review on lignin bioconversion including lignin degradation mechanisms, metabolic pathways, and applications for the production of value-added bioproducts. Advanced techniques on genetic and metabolic engineering are also covered in the recent development of biological platforms for lignin utilization. To conclude this article, the existing challenges for efficient lignin bioprocessing are analyzed and possible directions for future work are proposed.  相似文献   

16.
Methane is becoming a major candidate for a prominent carbon feedstock in the future, and the bioconversion of methane into valuable products has drawn increasing attention. To facilitate the use of methanotrophic organisms as industrial strains and accelerate our ability to metabolically engineer methanotrophs, simple and rapid genetic tools are needed. Electroporation is one such enabling tool, but to date it has not been successful in a group of methanotrophs of interest for the production of chemicals and fuels, the gammaproteobacterial (type I) methanotrophs. In this study, we developed electroporation techniques with a high transformation efficiency for three different type I methanotrophs: Methylomicrobium buryatense 5GB1C, Methylomonas sp. strain LW13, and Methylobacter tundripaludum 21/22. We further developed this technique in M. buryatense, a haloalkaliphilic aerobic methanotroph that demonstrates robust growth with a high carbon conversion efficiency and is well suited for industrial use for the bioconversion of methane. On the basis of the high transformation efficiency of M. buryatense, gene knockouts or integration of a foreign fragment into the chromosome can be easily achieved by direct electroporation of PCR-generated deletion or integration constructs. Moreover, site-specific recombination (FLP-FRT [FLP recombination target] recombination) and sacB counterselection systems were employed to perform marker-free manipulation, and two new antibiotics, zeocin and hygromycin, were validated to be antibiotic markers in this strain. Together, these tools facilitate the rapid genetic manipulation of M. buryatense and other type I methanotrophs, promoting the ability to perform fundamental research and industrial process development with these strains.  相似文献   

17.
随着生物化工技术的不断发展成熟,通过改造微生物已可以实现二氧化碳、甲烷等温室气体的固定、转化和利用,而电子传递及能量供给对微生物固碳效率起着决定性的作用。本文首先分析了好氧性嗜甲烷菌、化能自养微生物等天然微生物细胞内外的直接、间接电子传递系统。在此基础上,围绕微生物固碳细胞工厂的构建,进一步介绍了基于光能、电能的人工电子供给策略及其对固碳过程中代谢通量、合成路径和供能效率的影响。最后针对微生物固碳的关键共性技术难点,简要展望了可行性的解决方案及相关应用前景。  相似文献   

18.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methylotrophs have proved successful, autonomous methylotrophy, i.e. the ability to utilize methane or methanol as sole carbon and energy substrates, has not yet been realized. Here, we address an important limitation of autonomous methylotrophy in E. coli: the inability of the organism to synthesize several amino acids when grown on methanol. By activating the stringent/stress response via ppGpp overproduction, or DksA and RpoS overexpression, we demonstrate improved biosynthesis of proteinogenic amino acids via endogenous upregulation of amino acid synthesis pathway genes. Thus, we were able to achieve biosynthesis of several limiting amino acids from methanol-derived carbon, in contrast to the control methylotrophic E. coli strain. This study addresses a key limitation currently preventing autonomous methylotrophy in E. coli and possibly other synthetic methylotrophs and provides insight as to how this limitation can be alleviated via stringent/stress response activation.  相似文献   

19.
Polyhydroxyalkanoates (PHAs) are biopolyesters that generally consist of 3-, 4-, 5-, and 6-hydroxycarboxylic acids, which are accumulated as carbon and energy storage materials in many bacteria in limited growth conditions with excess carbon sources. Due to the diverse substrate specificities of PHA synthases, the key enzymes for PHA biosynthesis, PHAs with different material properties have been synthesized by incorporating different monomer components with differing compositions. Also, engineering PHA synthases using in vitro-directed evolution and site-directed mutagenesis facilitates the synthesis of PHA copolymers with novel material properties by broadening the spectrum of monomers available for PHA biosynthesis. Based on the understanding of metabolism of PHA biosynthesis, recombinant bacteria have been engineered to produce different types of PHAs by expressing heterologous PHA biosynthesis genes, and by creating and enhancing the metabolic pathways to efficiently generate precursors for PHA monomers. Recently, the PHA biosynthesis system has been expanded to produce unnatural biopolyesters containing 2-hydroxyacid monomers such as glycolate, lactate, and 2-hydroxybutyrate by employing natural and engineered PHA synthases. Using this system, polylactic acid (PLA), one of the major commercially-available bioplastics, can be synthesized from renewable resources by direct fermentation of recombinant bacteria. In this review, we discuss recent advances in the development of the PHA biosynthesis system as a platform for tailor-made polyesters with novel material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号