首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 114 毫秒
1.
Exposure of chromaffin cells to digitonin causes the loss of many cytosolic proteins. Here we report that scinderin (a Ca(2+)-dependent actin-filament-severing protein), but not gelsolin, is among the proteins that leak out from digitonin-permeabilized cells. Chromaffin cells that were exposed to increasing concentrations (15-40 microM) of digitonin for 5 min released scinderin into the medium. One-minute treatment with 20 microM digitonin was enough to detect scinderin in the medium, and scinderin leakage levelled off after 10 min of permeabilization. Elevation of free Ca2+ concentration in the permeabilizing medium produced a dose-dependent retention of scinderin. Results were confirmed by immunofluorescence microscopy of digitonin-permeabilized cells. Subcellular fractionation of permeabilized cells showed that scinderin leakage was mainly from the cytoplasm (80%); the remaining scinderin (20%) was from the microsomal fraction. Other Ca(2+)-binding proteins released by digitonin and also retained by Ca2+ were calmodulin, protein kinase C, and calcineurins A and B. Scinderin leakage was parallel to the loss of the chromaffin cell secretory response. Permeabilization in the presence of increasing free Ca2+ concentrations produced a concomitant enhancement in the subsequent Ca(2+)-dependent catecholamine release. The experiments suggest that: (1) scinderin is an intracellular target for Ca2+, (2) permeabilization of chromaffin cells with digitonin in the presence of micromolar Ca2+ concentrations retained Ca(2+)-binding proteins including scinderin, and (3) the retention of these proteins may be related to the increase in the subsequent Ca(2+)-dependent catecholamine release observed in permeabilized chromaffin cells.  相似文献   

2.
Doxorubicin (Dox) is a very potent antineoplastic agent used against several types of cancer, despite a cumulative cardiomyopathy that reduces the therapeutic index for treatment. H9c2 myoblast cells have been used as an in vitro model to study biochemical alterations induced by Dox treatment on cardiomyocyte cells. Despite the extensive work already published, few data are available regarding morphological alterations of H9c2 cells during Dox treatment. The purpose of the present work was to evaluate Dox-induced morphological alterations in H9c2 myoblasts, focusing especially on the nuclei, mitochondria, and structural fibrous proteins. Treatment of H9c2 cell with low concentrations of Dox causes alterations in fibrous structural proteins including the nuclear lamina and sarcomeric cardiac myosin, as well as mitochondrial depolarization and fragmentation, membrane blebbing with cell shape changes, and phosphatidylserine externalization. For higher Dox concentrations, more profound alterations are evident, including nuclear swelling with disruption of nuclear membrane structure, mitochondrial swelling, and extensive cytoplasm vacuolization. The results obtained indicate that Dox causes morphological alterations in mitochondrial, nuclear, and fibrous protein structures in H9c2 cells, which are dependent on the drug concentration. Data obtained with the present study allow for a better characterization of the effects of Dox on H9c2 myoblasts, used as a model to study Dox-induced cardiotoxicity. The results obtained also provide new and previously unknown targets that can contribute to understand the mechanisms involved in the cardiotoxicity of Dox.  相似文献   

3.
Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed.  相似文献   

4.
Some new data concerning the role of transport proteins of the ABC family in multidrug resistance (MDR) of human tumor cells, and problems connected with regulation of these proteins are considered. MDR is a complex phenomenon that may be caused simultaneously by several mechanisms functioning in one and the same cell. Among them there may be the alterations of activity of several transport proteins. Activation of these proteins may be associated with alterations of activities of different cell protective systems and of the signal transduction pathways involved in regulation of proliferation, differentiation, and apoptosis. Clinical significance of multifactor MDR is discussed.  相似文献   

5.
Kulig P  Cichy J 《Cytokine》2005,30(5):269-274
Quantitative changes in plasma protein concentrations during tissue injury or inflammation (acute phase response) are often accompanied by specific alterations in the carbohydrate moieties of these proteins. The glycosylation changes comprise alterations in the type of branching of the carbohydrate structures as revealed by modulated reactivity of acute phase glycoproteins with the lectin concanavalin A. Interestingly, inflammation-induced changes in the glycosylation of acute phase proteins have been shown to affect the functional properties of these proteins. In this study we demonstrate that synthesis of acute phase protein alpha(1)-PI, the controlling inhibitor of neutrophil elastase, is significantly up-regulated in hepatic and lung-derived epithelial cells by the inflammatory mediator oncostatin M. Although oncostatin M markedly altered the concanavalin A reactivity of hepatic alpha(1)-PI, lung-derived epithelial cells did not change the pattern of alpha(1)-PI glycan branching upon stimulation with oncostatin M. These results indicate that inflammation-induced changes in glycosylation of alpha(1)-PI may have different impacts on functional properties of liver and lung-synthesized alpha(1)-PI.  相似文献   

6.
Abstract

Proteins are major target for radicals and other oxidants when these are formed in both intra- and extracellular environments in vivo. Formation of lesions on proteins may be highly sensitive protein-based biomarkers for oxidative damage in mammalian systems. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. ROS scavenging activities of intact proteins are weaker than those of misfolded proteins or equivalent concentrations of their constituent amino acids. Protein oxidation and enhanced proteolytic degradation, therefore, have been suggested to cause a net increase in ROS scavenging capacity. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, may contribute to the observed accumulation and damaging actions of oxidized proteins during ageing and in pathologies such as diabetes, arteriosclerosis and neurodegenerative diseases. Protein oxidation may play a controlling role in cellular remodelling and cell growth. There is some evidence that antioxidant supplementation may protect against protein oxidation, but additional controlled studies of antioxidant intake to evaluate the significance of dietary/pharmacological antioxidants in preventing physiological/pathological oxidative changes are needed.  相似文献   

7.
Intracellular Ca2+ at concentrations ranging from 0 to 10 mumol/l increases the shear modulus of surface elasticity (mu) and the surface viscosity (eta) of human red blood cells by 20% and 70%, respectively. K+ selective channels in the red cell membrane become activated by Ca2+. The activation still occurs to the same extent when the membrane skeleton is degraded by incorporation of trypsin into resealed red cell ghosts, suggesting that the channel activation is not controlled by the proteins of the membrane skeleton and is independent of mu and eta. Incorporation of trypsin at concentrations ranging from 0 to 100 ng/ml into red cell ghosts leads to a graded digestion of spectrin, a cleavage of the band 3 protein and a release of the binding proteins ankyrin and band 4.1. These alterations are accompanied by an increase of the lateral mobility of the band 3 protein which, at 40 ng/ml trypsin, reaches a plateau value where the rate of lateral diffusion is enhanced by about two orders of magnitude above the rate measured in controls without trypsin. Proteolytic digestion by 10-20 ng/ml trypsin leads to a degradation of more than 40% of the spectrin and increases the rate of lateral diffusion to about 20-70% of the value observed at the plateau. Nevertheless, mu and eta remain virtually unaltered. However, the stability of the membrane is decreased to the point where a slight mechanical extension, or the shear produced by centrifugation results in disintegration and vesiculation, precluding measurements of eta and mu in ghosts treated with higher concentrations of trypsin. These findings indicate that alterations of the structural integrity of the membrane skeleton exert drastically different effects on mu and eta on the one hand and on the stability of the membrane on the other.  相似文献   

8.
During the ageing process of normal red cells and in the formation of irreversibly sickled cells (ISCs) there is a progressive increase in the intracellular concentration of Ca2+. This is parallelled by the development of a variety of morphological and biochemical changes in older fractions of normal cells and in ISCs which are similar to those seen in normal cells exposed to Ca2+ ionophore. These changes include cell shrinkage, loss of membrane lipid and degradation of cytoskeletal proteins and polyphosphoinositides. In this paper we consider the ways in which the Ca2+-dependent biochemical changes may be related to the morphological alterations which are characteristic of ageing and irreversible sickling.  相似文献   

9.
The aim of the research was to evaluate a heavy metal, Cadmium (Cd), which was used to produce alterations in human breast cancer cell line MCF-7. Moreover, we analyzed both immunohistochemical and ultrastructural alterations induced by the antineoplastic drug, 5-Fluorouracil (5-FU), after exposure to different concentrations of Cadmium. Also, we compared the effects of these compounds on actin and tubulin cytoskeleton proteins. Under ultramicroscopic observation, control cells looked polymorphous with filopodia. In cells already treated with small concentrations of Cd, after brief times of incubation, we observed an intense metabolic activity with larger, clearer, and elongated mitochondria characterized by thin and numerous dilated cristae. 5-FU-treated cells showed cytotoxicity signs with presence of pore-like alterations in the cell membrane and evident degeneration of cytoplasm and cell nuclei. The addition of 5-FU (1.5 μM) to the cells treated with Cd (5 μM-20 μM) did not induce significant ultrastructural changes in comparison with cells treated only with Cd. In Cd+5FU-treated cells mitochondria with globular aspect and regular cristae indicated the active metabolic state. In cells treated only with Cd we observed alterations in actin distribution, while tubulin branched out throughout the cytoplasm. With the association of Cd+5FU, we observed less morphological alterations in both tubulin and actin cytoskeleton proteins. Although the mechanism remains unknown at present, our findings suggest that Cd prevents the cytotoxic effect of 5-FU on breast cancer cells. These preliminary results could have an important clinical application in patients with breast cancer.  相似文献   

10.
Natural and synthetic polycationic proteins, such as protamine, have been used to reproduce the tissue injury and changes in epithelial permeability caused by positively charged substances released by polymorphonuclear cells during inflammation. Protamine has diverse and often conflicting effects on epithelial permeability. The effects of this polycation on the distribution and expression of tight junction (TJ)-associated proteins have not yet been investigated. In this work, we examined the influence of protamine on paracellular barrier function and TJ structure using two strains of the epithelial Madin-Darby canine kidney (MDCK) cell line that differed in their TJ properties ("tight" TJ-strain I and "leaky" TJ-strain II). Protamine induced concentration-, time- and strain-dependent alterations in transepithelial electrical resistance (Rt) only when applied to apical or apical+basolateral monolayer surfaces, indicating a polarity of action. In MDCK II cells, protamine (50 microg/ml) caused a significant increase in Rt that returned to control values after 2 h. However, the treatment of this MDCK strain with a higher concentration of protamine (250 microg/ml) significantly decreased the Rt after 30 min. In contrast, treated MDCK I monolayers showed a significant decrease in Rt after apical treatment with protamine at both concentrations. The protamine-induced decrease in Rt was paralleled by an increase in the phenol red basal-to-apical flux in both MDCK strains, suggesting disruption of the paracellular barrier. Marked changes in cytoskeletal F-actin distribution/polymerization and a significant reduction in the junctional expression of the tight junctional proteins occludin and claudin-1 but subtle alterations in ZO-1 were observed following protamine-elicited paracellular barrier disruption. In conclusion, protamine induces alterations in the epithelial barrier function of MDCK monolayers that may involve the cytoskeleton and TJ-associated proteins. The various actions of protamine on epithelial function may reflect different degrees of interaction of protamine with the plasma membrane and different intracellular processes triggered by this polycation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号