首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 811 毫秒
1.
Previous work with pregnant ewes has shown that acute bouts of exercise may cause changes in plasma hormone concentrations, blood flow distribution, and maternal and fetal temperatures. However, most of these studies do not quantify the chosen exercise intensity through measurement of oxygen consumption (VO2). Therefore the purpose of this study was to statistically model the VO2 response of pregnant sheep to treadmill (TM) exercise to determine the exercise intensities (% maximal VO2) of previous studies. Ewes with either single (n = 9) or twin (n = 5) fetuses were studied from 100 to 130 days of gestation. After 1-2 wk of TM habituation, maximal VO2 (VO2max) was determined by measurements of VO2 (open flow-through method) and blood lactate concentration. VO2 was measured as a function of TM incline (0, 3, 5, and 7 degree) and speed (0.8-3.4 m/s). VO2max averaged 57 +/- 7 (SD) ml.min-1.kg-1, and peak lactate concentration during exercise averaged 22 +/- 2 mmol/l. The relationship between VO2 (ml.min-1.kg-1) and incline (INC) and speed (SP) [VO2 = 0.70(INC) + 13.95(SP) + 1.07(INC x SP) - 1.18] was linear (r2 = 0.94). Our findings suggest that most previous research used exercise intensities less than 60% VO2max and indicate the need for further research that examines the effect of exercise during pregnancy at levels greater than 60% VO2max.  相似文献   

2.
Specificity of velocity in strength training   总被引:1,自引:0,他引:1  
Twenty-one male volunteers (ages 23-25 years) were tested pre- and post training for maximal knee extension power at five specific speeds (1.05, 2.09, 3.14, 4.19, and 5.24 rad X s-1) with an isokinetic dynamometer. Subjects were assigned randomly to one of three experimental groups; group S, training at 1.05 rad X s-1 (n = 8), group I, training at 3.14 rad X s-1 (n = 8) or group F, training at 5.24 rad X s-1 (n = 5). Subjects trained the knee extensors by performing 10 maximal voluntary efforts in group S, 30 in group I and 50 in group F six times a week for 8 weeks. Though group S showed significant increases in power at all test speeds, the percent increment decreased with test speed from 24.8% at 1.05 rad X s-1 to 8.6% at 5.24 rad X s-1. Group I showed almost similar increment in power (18.5-22.4 at all test speeds except at 2.09 rad X s-1 (15.4%). On the other hand, group F enhanced power only at faster test speeds (23.9% at 4.19 rad X s-1 and 22.8% at 5.24 rad X s-1).  相似文献   

3.
Effect of high-intensity endurance training on isokinetic muscle power   总被引:1,自引:0,他引:1  
The purpose of this study was to determine the effects of high-intensity endurance training on isokinetic muscle power. Six male students majoring in physical-education participated in high intensity endurance training on a cycle ergometer at 90% of maximal oxygen uptake (VO2max) for 7 weeks. The duration of the daily exercise session was set so that the energy expenditure equalled 42 kJ.kg-1 of lean body mass. Peak knee extension power was measured at six different speeds (30 degrees, 60 degrees, 120 degrees, 180 degrees, 240 degrees, and 300 degrees.s-1) with an isokinetic dynamometer. After training, VO2max increased significantly from mean values of 51.2 ml.kg-1.min-1, SD 6.5 to 56.3 ml.kg-1.min-1, SD 5.3 (P less than 0.05). Isokinetic peak power at the lower test speeds (30 degrees, 60 degrees and 120 degrees.s-1) increased significantly (P less than 0.05). However, no significant differences in muscle peak power were found at the faster velocities of 180 degrees, 240 degrees, and 300 degrees.s-1. The percentage improvement was dependent on the initial muscle peak power of each subject and the training stimulus (intensity of cycle ergometer exercise).  相似文献   

4.
To find out whether endurance training influences the kinetics of the increases in heart rate (fc) during exercise driven by the sympathetic nervous system, the changes in the rate of fc adjustment to step increments in exercise intensities from 100 to 150 W were followed in seven healthy, previously sedentary men, subjected to 10-week training. The training programme consisted of 30-min cycle exercise at 50%-70% of maximal oxygen uptake (VO2max) three times a week. Every week during the first 5 weeks of training, and then after the 10th week the subjects underwent the submaximal three-stage exercise test (50, 100 and 150 W) with continuous fc recording. At the completion of the training programme, the subjects' VO2max had increased significantly (39.2 ml.min-1.kg-1, SD 4.7 vs 46 ml.min-1.kg-1, SD 5.6) and the steady-state fc at rest and at all submaximal intensities were significantly reduced. The greatest decrease in steady-state fc was found at 150 W (146 beats.min-1, SD 10 vs 169 beats.min-1, SD 9) but the difference between the steady-state fc at 150 W and that at 100 W (delta fc) did not decrease significantly (26 beats.min-1, SD 7 vs 32 beats.min-1, SD 6). The time constant (tau) of the fc increase from the steady-state at 100 W to steady-state at 150 W increased during training from 99.4 s, SD 6.6 to 123.7 s, SD 22.7 (P less than 0.01) and the acceleration index (A = 0.63.delta fc.tau-1) decreased from 0.20 beats.min-1.s-1, SD 0.05 to 0.14 beats.min-1.s-1, SD 0.04 (P less than 0.02). The major part of the changes in tau and A occurred during the first 4 weeks of training. It was concluded that heart acceleration following incremental exercise intensities slowed down in the early phase of endurance training, most probably due to diminished sympathetic activation.  相似文献   

5.
The purpose of this study was to determine oxygen uptake (VO2) at various water flow rates and maximal oxygen uptake (VO2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m.s-1 and was increased by 0.05 m.s-1 every 2 min up to 1.00 m.s-1 and then by 0.05 m.s-1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production (VCO2), pulmonary ventilation (VE) and tidal volume (VT) were significantly greater in H than in N. There were no significant differences in the response of submaximal VO2, heart rate (fc) or respiratory frequency (fR) between N and H. Maximal VE, fR, VT, fc, blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l.min-1] was significantly lower by 12.0% (SD 3.4)% than that in N [4.15 (SD 0.18) l.min-1]. This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.  相似文献   

6.
Incompatibility of endurance- and strength-training modes of exercise   总被引:2,自引:0,他引:2  
Twenty-two male and female subjects trained for 7 wk for endurance (group E), for strength (group IS), or for both strength and endurance (group C) to evaluate the effect of concurrent performance of both modes of training on the in vivo force-velocity relationship of human muscle and on aerobic power. Endurance training consisted of five 5-min sessions three times a week on cycle ergometer with a work load that approached the subject's peak cycle-ergometer O2 uptake (peak CE VO2). Strength training consisted of two 30-s sets of maximal knee extensions per day performed on an isokinetic dynamometer three times a week at a velocity of 4.19 rad X s-1. Group C performed the same training as groups IS and E, alternating days of strength and endurance training. Subjects (groups C and IS) were tested pre- and posttraining for maximal knee-extension torque at a specific joint angle (0.52 rad below horizontal) for seven specific angular velocities (0, 0.84, 1.68, 2.81, 3.35, 4.19, and 5.03 rad X s-1). Groups C and E were tested for peak CE VO2 pretraining, at 14-day intervals, and posttraining. Group IS showed significant increases in angle-specific maximal torque at velocities up to and including the training speed (4.19 rad X s-1). Group C showed increases (P less than 0.05) at velocities of 0, 0.84, and 1.68 rad X s-1 only. Peak CE VO2, when expressed in relative or absolute terms, increased (P less than 0.05) approximately 18% for both groups E and C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Twenty young men trained the right knee extensors and flexors on an isokinetic dynamometer three times weekly over a 10-week period. During each session, 10 men in the slow training group completed three sets of 8 maximal contractions at a rate of 1.05 rad s-1, whereas the other 10, the fast group, completed three sets of 20 contractions at a rate of 4.19 rad s-1. Subjects wer pre- and post-tested for peak torque and power on an isokinetic dynamometer at 1.05, 3.14, and 4.19 rad s-1. Proportions of muscle fibre-types and fibre cross-sectional areas were determined from biopsy specimens taken before and after training from the right vastus lateralis. When testing was conducted at 1.05 rad s-1, the slow group improved (P less than 0.05) peak torque by 24.5 N m (8.5%), but no change was noted for the fast group. Power increased (P less than 0.05) by 32.7 W (13.6%) in the slow group and 5.5 W (2.5%) in the fast. At 3.14 rad s-1, both groups increased (P less than 0.05) peak torque and power. At 4.19 rad s-1, the fast group increased (P less than 0.05) peak torque by 30.0 N m (19.7%), whereas no training effect was observed in the slow group. There was no significant change in power in either group at 4.19 rad s-1. No significant changes were observed over the 10-week training period in percentages of type I, IIa and IIb fibres, but both groups showed significant increases (P less than 0.05) in type I and IIa fibre areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The effect of an increased angle of excursion and isometric pre-activation on isokinetic torques of knee extensors was investigated in five male subjects, mean age 35.0 years, SD 9.6. Peak torque and isoangular torque at 0.52 rad from full knee extension (FKE) were measured when contractions were carried out at 3.14, 4.19 and 5.24 rad.s-1 starting: 1) from a standard knee angle (SA) of 1.57 rad from FKE, 2) from the same starting angle as SA, plus an isometric preload (P) equivalent to 25% of isometric maximal voluntary contraction and 3) from an increased angle of knee flexion (IA), 2.09 rad from FKE plus P. Surface integrated electromyograms (iEMG) of the vastus lateralis muscle in SA and IA + P were also recorded. The IA + P had the effect of increasing peak torque, as compared to SA, on average by 12.0%, SD 7.5% (P less than 0.001) at 3.14 rad.s-1, 19.5%, SD 5.5% (P less than 0.001) at 4.19 rad.s-1, 21.6%, SD 10.7% (P less than 0.001) at 5.24 rad.s-1 and of increasing mean iEMG by 15.7%, SD 7.0% (P less than 0.001) at 5.24 rad.s-1. The IA + P also had the effect of increasing the angle from FKE at which peak torque occurred: from means of 0.80 rad, SD 0.11 to 1.00 rad, SD 0.07 at 3.14 rad.s-1, from 0.65 rad, SD 0.11 to 0.92 rad, SD 0.09 at 4.19 rad.s-1 and from 0.60 rad, SD 0.11 to 0.88 rad, SD 0.11 at 5.24 rad.s-1 (P less than 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effects of submaximal and maximal exercise on cerebral perfusion were assessed using a portable, recumbent cycle ergometer in nine unacclimatized subjects ascending to 5,260 m. At 150 m, mean (SD) cerebral oxygenation (rSO2%) increased during submaximal exercise from 68.4 (SD 2.1) to 70.9 (SD 3.8) (P < 0.0001) and at maximal oxygen uptake (.VO2(max)) to 69.8 (SD 3.1) (P < 0.02). In contrast, at each of the high altitudes studied, rSO2 was reduced during submaximal exercise from 66.2 (SD 2.5) to 62.6 (SD 2.1) at 3,610 m (P < 0.0001), 63.0 (SD 2.1) to 58.9 (SD 2.1) at 4,750 m (P < 0.0001), and 62.4 (SD 3.6) to 61.2 (SD 3.9) at 5,260 m (P < 0.01), and at .VO2(max) to 61.2 (SD 3.3) at 3,610 m (P < 0.0001), to 59.4 (SD 2.6) at 4,750 m (P < 0.0001), and to 58.0 (SD 3.0) at 5,260 m (P < 0.0001). Cerebrovascular resistance tended to fall during submaximal exercise (P = not significant) and rise at .VO2(max), following the changes in arterial oxygen saturation and end-tidal CO(2). Cerebral oxygen delivery was maintained during submaximal exercise at 150 m with a nonsignificant fall at .VO2(max), but at high altitude peaked at 30% of .VO2(max) and then fell progressively at higher levels of exercise. The fall in rSO2 and oxygen delivery during exercise may limit exercise at altitude and is likely to contribute to the problems of acute mountain sickness and high-altitude cerebral edema.  相似文献   

10.
Eight young men were tested for strength, anaerobic capacity and aerobic endurance in a post absorptive state and after a 3.5 day fast. Strength was tested both isokinetically (elbow flexors, 0.52 rad x s-1 and 3.14 rad x s-1) and isometrically. Anaerobic capacity was evaluated by having subjects perform 50 rapidly repeated isokinetic contractions of the elbow flexors at 3.14 rad x s-1. Aerobic endurance was measured as time to volitional fatigue during a cycle ergometer exercise at 45% VO2max. Measures of VO2, VE, heart rate, and ratings of perceived exertion were obtained prior to and during the cycle exercise. The 3.5 day fast did not influence isometric strength, anaerobic capacity or aerobic endurance. Isokinetic strength was significantly reduced (approximately 10%) at both velocities. VO2, VE and perceived exertion were not affected by fasting. Fasting significantly increased heart rate during exercise but not at rest. It was concluded that there are minimal impairments in physical performance parameters measured here as a result of a 3.5 day fast.  相似文献   

11.
Two studies were conducted in 83 college men to determine the degree of generality of individual differences in upper body muscular strength assessed by different testing modes. In study 1 (N = 43), correlations were computed between four measures of upper body strength using the bench press movement, maximal isokinetic (0.09 rad.s-1), maximal fast (0.126 m.s-1) and slow (0.037 m.s-1) hydraulic, and one repetition maximum (1-RM) free weight bench press (BP). Compared to free weight BP, maximal strength during isokinetic and slow hydraulic BP was approximately 29% and approximately 8% larger, and fast hydraulic BP strength was approximately 63% lower (p less than 0.05). Simple linear regression of isokinetic BP on 1-RM BP yielded r = 0.79, error of prediction (SE) = 12%, and generality = 81%. The corresponding averaged values for the regression of slow and fast hydraulic BP on free weight 1-RM BP were r = 0.77, SE = 13.5%, and generality = 84%. In Study 2 (N = 40), testing included maximal isokinetic concentric and eccentric arm flexion and extension at 0.524, 1.570, and 2.094 rad.s-1. The ratio of concentric to eccentric torque at the 3 speeds averaged 0.68 (flexion) and 0.70 (extension), and eccentric torques were 32% and 30% greater than concentric torques (p less than 0.05). The linear regression between concentric vs. eccentric flexion and extension torques at the three velocities yielded an average r = 0.80, SE = 13.7%, and generality = 73%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The purpose of this study was to assess the rate of training-induced cardiorespiratory adaptations in older men [mean (SD), 66.5 (1.2) years]. The eight subjects trained an average of 4.3 (0.3) times each week. The walk/jog training was in two phases with 4 weeks (phase 1) at a speed to elicit 70% of pre-training maximal oxygen consumption (VO2max), and 5 weeks (phase 2) at 80%. Maximal exercise treadmill tests and a standardized submaximal protocol were performed prior to training, at weekly intervals during the training programme, and after training. VO2max (ml.kg-1.min-1) increased significantly over both phases: 6.6% after the first 4 weeks, and an additional 5.2% after the final 5 weeks. The weekly changes in VO2max over phase 1 were well fitted by an exponential association curve (r = 0.75). The half-time for the rate of adaptation was 13.8 days, or 8.3 training sessions. Over phase 2, the change in VO2max did not plateau and a time course could not be determined. Submaximal exercise heart rate (fc) was reduced a significant 10 beats.min-1 after the first 4 weeks, and further 6 beats.min-1 over the final 5 weeks. The fc reductions showed half-times of 9.1 days (phase 1) and 9.8 days (phase 2) (or 5-6 training sessions). The anaerobic ventilation threshold was increased 13.9% over the 9 weeks of training and the respiratory exchange ratio during constant load heavy exercise was significantly reduced; however, these changes could not be described by an exponential time course. Thus, short-term exercise training of older men resulted in significant and rapid cardiorespiratory improvements.  相似文献   

13.
The objective of these experiments was to determine whether living and training in moderate hypoxia (MHx) confers an advantage on maximal normoxic exercise capacity compared with living and training in normoxia. Rats were acclimatized to and trained in MHx [inspired PO2 (PI(O2)) = 110 Torr] for 10 wk (HTH). Rats living in normoxia trained under normoxic conditions (NTN) at the same absolute work rate: 30 m/min on a 10 degrees incline, 1 h/day, 5 days/wk. At the end of training, rats exercised maximally in normoxia. Training increased maximal O2 consumption (VO2 max) in NTN and HTH above normoxic (NS) and hypoxic (HS) sedentary controls. However, VO2 max and O2 transport variables were not significantly different between NTN and HTH: VO2 max 86.6 +/- 1.5 vs. 86.8 +/- 1.1 ml x min(-1) x kg(-1); maximal cardiac output 456 +/- 7 vs. 443 +/- 12 ml x min(-1) x kg(-1); tissue blood O2 delivery (cardiac output x arterial O2 content) 95 +/- 2 vs. 96 +/- 2 ml x min(-1) x kg(-1); and O2 extraction ratio (arteriovenous O2 content difference/arterial O2 content) 0.91 +/- 0.01 vs. 0.90 +/- 0.01. Mean pulmonary arterial pressure (Ppa, mmHg) was significantly higher in HS vs. NS (P < 0.05) at rest (24.5 +/- 0.8 vs. 18.1 +/- 0.8) and during maximal exercise (32.0 +/- 0.9 vs. 23.8 +/- 0.6). Training in MHx significantly attenuated the degree of pulmonary hypertension, with Ppa being significantly lower at rest (19.3 +/- 0.8) and during maximal exercise (29.2 +/- 0.5) in HTH vs. HS. These data indicate that, despite maintaining equal absolute training intensity levels, acclimatization to and training in MHx does not confer significant advantages over normoxic training. On the other hand, the pulmonary hypertension associated with acclimatization to hypoxia is reduced with hypoxic exercise training.  相似文献   

14.
Muscle ATP, creatine phosphate and lactate, and blood pH and lactate were measured in 7 male sprinters before and after running 40, 60, 80 and 100 m at maximal speed. The sprinters were divided into two groups, group 1 being sprinters who achieved a higher maximal speed (10.07 +/- 0.13 m X s-1) than group 2 (9.75 +/- 0.10 m X s-1), and who also maintained the speed for a longer time. The breakdown of high-energy phosphate stores was significantly greater for group 1 than for group 2 for all distances other than 100 m; the breakdown of creatine phosphate for group 1 was almost the same for 40 m as for 100 m. Muscle and blood lactate began to accumulate during the 40 m exercise. The accumulation of blood lactate was linear (0.55 +/- 0.02 mmol X s-1 X l-1) for all distances, and there were no differences between the groups. With 100 m sprints the end-levels of blood and muscle lactate were not high enough and the change in blood pH was not great enough for one to accept that lactate accumulation is responsible for the decrease in running speed over this distance. We concluded that in short-term maximal exercise, performance depends on the capacity for using high-energy phosphates at the beginning of the exercise, and the decrease in running speed begins when the high-energy phosphate stores are depleted and most of the energy must then be produced by glycolysis.  相似文献   

15.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

16.
The effect of 2 min treadmill exercise, at speeds of 6-12 m.s-1 on an incline of 5 degrees, upon muscle adenine nucleotide loss and lactate accumulation was studied in six Thoroughbred horses. Minimal change occurred in the adenosine triphosphate (ATP) content of the middle gluteal muscle at speeds of 10 m.s-1 or less, but significant loss (up to 47%) had occurred in all horses by 12 m.s-1. The decline in ATP significantly correlated with the accumulation of muscle lactate, beginning shortly after the accumulation of 40 mmol.kg-1 dry muscle lactate. Decline in muscle ATP was mirrored closely by the appearance of ammonia, and to a lesser extent, hypoxanthine and uric acid in plasma. The results suggest that peak accumulation of any of these, or simply the concentration at a specified recovery time, may be used as a measure of ATP loss in the musculature as a whole. This was not so in the case of xanthine, which may also be formed from the degradation of guanidine nucleotides. An In-In plot of plasma ammonia against treadmill speed indicated a break point in accumulation between 8 and 9 m.s-1. The kinetics of ammonia accumulation with speed differed from those of lactate.  相似文献   

17.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   

18.
The purpose of this investigation was to examine the cardiovascular and metabolic effects of a 5 wk arm crank (AC) training program on submaximal wheelchair (WC) ergometry in able-bodied women. The 6 subjects in the training group (TG) and 4 in the control group (CG) performed a 10 min WC exercise prior to and following the training period at a power output (PO) that elicited 70% of the pre-training peak oxygen uptake (VO2). Steady state VO2, heart rate (HR), cardiac output (Qc) and stroke volume (Vs) were measured. Resting and post-exercise blood lactate concentrations (LA) were measured, the difference was recorded as net LA. The TG exercised on the AC 3 d.wk-1 at a PO that elicited 85% of each subject's recorded peak HR. Each session consisted of four 4 min exercise bouts preceded by a 2 min warm-up and interspersed with 2 min rest periods. After training, the TG had a significantly (p less than 0.05) lower HR, larger Vs and lower LA in response to the WC exercise. Qc and VO2 were not significantly altered. The results demonstrate that the AC exercise program used in this study produced a physiological training effect which was observed during submaximal WC exercise of an intensity frequently encountered during daily WC ambulation. It appears that short-term, moderate intensity AC training offers an adequate stimulus to reduce the stress imposed by wheelchair locomotion.  相似文献   

19.
The purpose of this study was to set up a protocol of intermittent exercise to train young basketball players. Twenty-one players were asked to complete (a) an incremental test to determine maximal oxygen uptake (VO2max), the speed at the ventilatory threshold (vthr) and the energy cost of "linear" running (Cr) and (b) an intermittent test composed of 10 shuttle runs of 10-second duration and 30-seconds of recovery (total duration: about 6 minutes). The exercise intensity (the running speed, vi) was set at 130% of vthr. During the intermittent tests, oxygen uptake (VO2) and blood lactate concentration (Lab) were measured. The average pretraining VO2 calculated for a single bout (131 ± 9 ml · min(-1) kg(-1)) was about 2.4 times greater than the subjects' measured VO2max (54.7 ± 4.6 ml · min(-1) · kg(-1)). The net energy cost of running (9.2 ± 0.9 J · m(-1) · kg(-1)) was about 2.4 times higher than that measured at constant "linear" speed (3.9 ± 0.3 J · m(-1) · kg(-1)). The intermittent test was repeated after 7 weeks of training: 9 subjects (control group [CG]) maintained their traditional training schedule, whereas for 12 subjects (experimental group [EG]) part of the training was replaced by intermittent exercise (the same shuttle test as described above). After training, the VO2 measured during the intermittent test was significantly reduced (p < 0.05) in both groups (-10.9% in EG and - 4.6 in CG %), whereas Lab decreased significantly only for EG (-31.5%). These data suggest that this training protocol is effective in reducing lactate accumulation in young basketball players.  相似文献   

20.
Few studies have examined the aerobic demand of backstroke swimming, and its relation to body morphology, technique, or performance. The aims of this study were thus to: i) describe the aerobic demand of backstroke swimming in proficient swimmers at high velocities; ii) assess the effects of body size and stroke technique on submaximal and maximal O2 costs, and; iii) test for a relationship between submaximal O2 costs and maximal performance. Sixteen male competitive swimmers were tested during backstroke swimming at velocities from 1.0 to 1.4 m.s-1. Results showed that VO2 increased linearly with velocity (m.s-1) following the equation VO2 = 6.28v - 3.81 (r = 0.77, SEE/Y = 14.9%). VO2 was also related to the subjects' body mass, height, and armspan. Longer distances per stroke were associated with lower O2 costs, and better maximal performances. A significant relation was found between VO2 at 1.1 m.s-1, adjusted for body mass, and 400 m performance (r = -0.78). Submaximal VO2 was also related to reported times for 100 m and 200 m races. Multiple correlation analyses indicated that VO2 at 1.1 m.s-1 and VO2max accounted for up to 78% of the variance in maximal performances. These results suggest that the assessment of submaximal and maximal VO2 during backstroke swimming may be of value in the training and testing programs of competitive swimmers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号