首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
The composition of tissue and membrane fatty acids in ectothermic vertebrates is influenced by both temperature acclimation and diets. If such change in body lipid composition and thermal physiology were linked, a diet-induced change in body lipid composition should result in a change in thermal physiology. We therefore investigated whether the selected body temperature of the agamid lizardAmphibolurus nuchalis (body mass 20 g) is influenced by the lipid composition of dietary fatty acids and whether diet-induced changes in thermal physiology are correlated with changes in body lipid composition. The selected body temperature in two groups of lizards was indistinguishable before dietary treatments. The selected body temperature in lizards after 3 weeks on a diet rich in saturated fatty acids rose by 2.1 °C (photophase) and 3.3 °C (scotophase), whereas the body temperature of lizards on a diet rich in unsaturated fatty acids fell by 1.5 °C (photophase) and 2.0 °C (scotophase). Significant diet-induced differences were observed in the fatty acid composition of depot fat, liver and muscle. These observations suggest that dietary lipids may influence selection of body temperature in ectotherms via alterations of body lipid composition.Abbreviations bm body mass - FA fatty acid(s) - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids - T a air temperature - T b body temperature - UFA unsaturated fatty acids  相似文献   

2.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

3.
Summary Dieary lipids strongly influence the pattern of torpor and the body lipid composition of mammalian hibernators. The object of the present study was to investigate whether these diet-induced physiological and biochemical changes also occur in species that show shallow, daily torpor. Deer mice, Peromyscus maniculatus, were fed with rodent chow (control diet) or rodent chow with either 10% sunflower seed oil (unsaturated diet) or 10% sheep fat (saturated diet). Animals on the unsaturated diet showed a greater occurrence of torpor (80–100% vs 26–43%), longer torpor bouts (4.5 vs 2.25 h), a lower metabolic rate during torpor (0.96 vs 2.25 ml O2·g-1·h-1), and a smaller loss of body mass during withdrawal of food (2.35 vs 3.90 g) than animals on the saturated diet; controls were intermediate. These diet-induced physiological changes were associated with significant alterations in the fatty acid composition of depot fat, leg muscle and brain total lipids, and heart mitochondrial phospholipids. Significant differences in the total unsaturated fatty acid (UFA) content between animals on saturated and unsaturated diet were observed in depot fat (55.7% vs 81.1%) and leg muscle (56.4% vs 72.1%). Major compositional differences between diet groups also occurred in the concentration of n6 and/or n3 fatty acids of brain and heart mitochondria. The study suggests that dietary lipids may play an important role in the seasonal adjustment of physiology in heterothermic mammals.Abbreviations EDTA ethylenediaminetetra-acetic acid - HEPES N-2 hydroxyethylpiperazine-N1-2-ethanesulphonic acid - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - RMR Testing metabolic rate - SD standard deviation - SFA saturated fatty acids - SNK Student-Newman-Keuls test - T1 air temperature - Tb body temperature - UFA unsaturated fatty acids - rate of oxygen consumption Dedicated to the late John K. Raison  相似文献   

4.
The physiological signal for torpor initiation appears to be related to fuel availability. Studies on metabolic fuel inhibition in placental heterotherms show that glucose deprivation via the inhibitor 2-deoxy-D-glucose (2DG) initiates a torpor-like state, whereas fatty acid deprivation via mercaptoacetate (MA) does not. As previous studies using inhibitors were limited to quantifying body temperature in placentals, we investigated whether inhibition of glucose or fatty acids for cellular oxidation induces torpor in the marsupial hibernator Cercartetus nanus, and how the response of metabolic rate is related to body temperature. Glucoprivation initiated a torpor-like state in C. nanus, but animals had much higher minimum body temperatures and metabolic rates than those of torpid food-deprived animals and arousal rates were slower. Moreover, 2DG-treated animals were thermoregulating at ambient temperatures of 20 and 12 °C, whereas food-deprived torpid animals were thermo-conforming. We suggest that glucoprivation reduces the hypothalamic body temperature set point, but only by about 8 °C rather than the approximately 28 °C during natural torpor. Reduced fatty acid availability via MA also induced a torpor-like state in some C. nanus, with physiological variables that did not differ from those of torpid food-deprived animals. We conclude that reduced glucose availability forms only part of the physiological trigger for torpor initiation in C. nanus. Reduced fatty acid availability, unlike for placental heterotherms, may be an important cue for torpor initiation in C. nanus, perhaps because marsupials lack functional brown adipose tissue.Abbreviations BAT brown adipose tissue - BMR basal metabolic rate - 2DG 2-deoxy-D-glucose - FD food deprived - GLM general linear models - MA mercaptoacetate - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature - Tset body temperature set pointCommunicated by I.D. Hume  相似文献   

5.
Summary Cold acclimation lowers the selected body temperature (T b) in many ectothermic vertebrates. This change in behavioural thermoregulation is accompanied by an increase in the proportion of polyunsaturated fatty acids in tissues and cellular membranes. We investigated how diets containing different fatty acids, known to significantly alter the fatty acid composition of animal tissues and membranes, affect the selected T b of the lizard Tiliqua rugosa. Lizards on a diet containing many polyunsaturated fatty acids (10% sunflower oil) showed a 3–5°C decrease in T b, whereas T b in animals on a diet containing mainly saturated fatty acids (10% sheep fat) did not change. Our study suggests that the composition of dietary lipids influences thermoregulation in ectothermic vertebrates and may thus play a role in the seasonal adjustment of their physiology.Abbreviations CST central standard time - T a air temperature - T b Body temperature  相似文献   

6.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

7.
Physiological mechanisms causing reduction of metabolic rate during torpor in heterothermic endotherms are controversial. The original view that metabolic rate is reduced below the basal metabolic rate because the lowered body temperature reduces tissue metabolism has been challenged by a recent hypothesis which claims that metabolic rate during torpor is actively downregulated and is a function of the differential between body temperature and ambient temperature, rather than body temperature per se. In the present study, both the steady-state metabolic rate and body temperature of torpid stripe-faced dunnarts, Sminthopsis macroura (Dasyuridae: Marsupialia), showed two clearly different phases in response to change of air temperature. At air temperatures between 14 and 30°C, metabolic rate and body temperature decreased with air temperature, and metabolic rate showed an exponential relationship with body temperature (r 2=0.74). The Q 10 for metabolic rate was between 2 and 3 over the body temperature range of 16 to 32°C. The difference between body temperature and air temperature over this temperature range did not change significantly, and the metabolic rate was not related to the difference between body temperature and air temperature (P=0.35). However, the apparent conductance decreased with air temperature. At air temperatures below 14°C, metabolic rate increased linearly with the decrease of air temperature (r 2=0.58) and body temperature was maintained above 16°C, largely independent of air temperature. Over this air temperature range, metabolic rate was positively correlated with the difference between body temperature and air temperature (r 2=0.61). Nevertheless, the Q 10 for metabolic rate between normothermic and torpid thermoregulating animals at the same air temperature was also in the range of 2–3. These results suggest that over the air temperature range in which body temperature of S. macroura was not metabolically defended, metabolic rate during daily torpor was largely a function of body temperature. At air temperatures below 14°C, at which the torpid animals showed an increase of metabolic rate to regulate body temperature, the negative relationship between metabolic rate and air temperature was a function of the differential between body temperature and air temperature as during normothermia. However, even in thermoregulating animals, the reduction of metabolic rate from normothermia to torpor at a given air temperature can also be explained by temperature effects.Abbreviations BM body mass - BMR basal metabolic rate - C apparent conductance - MR metabolic rate - RMR resting metabolic rate - RQ respiratory quotient - T a air temperature - T b body temperature - T lc lower critical temperature - T tc critical air temperature during torpor - TMR metabolic rate during torpor - TNZ thermoneutral zone - T difference between body temperature and air temperature - VO2 rate of oxygen consumption  相似文献   

8.
Comparative study about the salt-induced oxidative stress and lipid composition has been realised in primary root tissues for two varieties of maize (Zea mays L.) in order to evaluate their responses to salt stress. The root growth, root water content (WC), hydrogen peroxide (H2O2) generation, lipid peroxidation, membrane stability index and the changes in the profile of fatty acids composition were investigated. Salinity impacts in term of root growth, water content, H2O2 generation, lipid peroxidation and membrane destabilisation were more pronounced in primary roots of Aristo than in those of Arper indicating more sensitivity of the first variety. It was confirmed by gas chromatography that the composition of fatty acids in roots of both varieties was constituted mainly by 16:0 and 18:0 as major saturated fatty acids and 18:1ω9, 18:2ω6 and 18:3ω3 as major unsaturated fatty acids. Total lipid extracts from the roots of both varieties showed that the lipid saturation level increased under salt stress, notwithstanding the increased proportion of polyunsaturated fatty acids. The changes in lipid saturation being predominantly due to decreases in oleic acid (18:1ω9) and increases in palmitic acid (16:0). However, Arper root extracts contained a lower proportion of saturated lipids than Aristo. The enhanced proportion of highly polyunsaturated fatty acids especially linolenic and eicosapentaenoic acids was considered to be the characteristic of the relatively salt tolerance in Arper roots.  相似文献   

9.
When the roots of rye plants grown at 20°C were cooled to 8°C the concentration of phospholipid in them more than doubled over a 7 d period in comparison with that in roots remaining at 20°C. The relative abundance of lecithin (PC) declined while that of phosphatidyl ethanolamine (PE) increased; this change was completed after 2 d cooling. Labelling with 32P suggested that turnover of phospholipids may be inhibited by low temperature. Acyl lipids contained an increased proportion of linolenic acid (18:3) and reduced proportion of linoleic acid (18:2) when roots were cooled at 8°C for 7 d. The ratio of these acids is a relatively more sensitive indicator of desaturation than is the double bond index. Cooling brought about no change in the abundance of the principal saturated acid, palmitic (16:0). In the first 3 days of cooling PC and PE desaturated markedly while there was no change in galactosyl and neutral lipids. Desaturation did not appear to be greatly sensitive to the concentration of dissolved O2 and was only partly inhibited in 8°C solutions where the oxygen concentration was lowered to 0.5–2.0%. Positional analysis of acyl chains in PC and PE showed that more than 90% of all 16:0 is associated with position I while 65% of the 18:2+18:3 is associated with position II. When roots are cooled the abundance of 18:3 increases in both chains but the relative distribution of saturated and unsaturated fatty acids remains constant in positions I and II. At both 20°C and 8°C there is a high probability that a saturated chain in position I will be paired with the polyunsaturated one in position II.Abbreviations PC Lecithin - PE phosphatidyl ethanolamine - TLC thin layerchromatography - BHT butylatedhydroxytoluene  相似文献   

10.
To investigate both seasonal changes and possible intracorporal gradients of phospholipid fatty acid composition, skeletal muscles (n=124), hearts (n=27), and livers (n=34) from free-living brown hares (Lepus europaeus) were analyzed. Phospholipids from both skeletal muscles and heart had a high degree of unsaturation with 66.8±0.63% and 65.7±0.5% polyunsaturated fatty acids, respectively. This is the highest proportion of polyunsaturated fatty acids reported in any mammalian tissue. Polyunsaturated fatty acid content in skeletal muscles was 2.3% greater in winter compared to summer (F1,106=17.7; P=0.0001), which may reflect thermoregulatory adjustments. Arachidonate (C20:4n-6) showed the greatest seasonal increase (+2.5%; F=7.95; P=0.0057). However, there were no pronounced differences in polyunsaturated fatty acid content between skeletal muscles from different locations in the body (m. iliopsoas, m. longissimus dorsi and m. vastus). Total muscle phospholipid polyunsaturated fatty acid content was correlated with polyunsaturated fatty acid content in triacyglycerols from perirenal white adipose tissue depots (r2=0.61; P=0.004). Polyunsaturated fatty acids were enriched in muscle phospholipids (56.8–73.6%), compared to white adipose tissue lipids (20.9–61.2%), and liver phospholipids (25.1–54.2%). We suggest that the high degree of muscle membrane unsaturation is related to hare-specific traits, such as a high maximum running speed.Abbreviations BMR basal metabolic rate - DPA docosapentaenoic acid - DHA docosahexaenoic acid - FA fatty acid - MUFA monounsaturated fatty acid - PC principal component - PUFA polyunsaturated fatty acid - SFA saturated fatty acid - UI unsaturation index - WAT white adipose tissueCommunicated by: G. Heldmaier  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号