首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
David Western 《Oecologia》1983,59(2-3):269-271
It is argued that birth rate, turnover rate and production/biomass ratios (P/B) are equivalent in stable populations. It is then shown from field data on 21 mammal species that production scales as a 2/3 power of body mass, suggesting that size rather than life history characteristics explain most interspecific variation. The relationship simolifies calculations of annual production in populations and energy flow through communities.  相似文献   

2.
What selection pressures drive the evolution of offspring size? Answering this fundamental question for any species requires an understanding of the relationship between offspring size and offspring fitness. A major goal of evolutionary ecologists has been to estimate this critical relationship, but for organisms with complex lifecycles, logistical constraints restrict most studies to early life‐history stages only. Here, we examine the relationship between offspring size and offspring performance in the field across multiple life‐history stages and across generations in a marine invertebrate .We then use these data to parameterise a simple optimality model to generate predictions of optimal offspring size and determined whether these predictions depended on which estimate of offspring performance was used. We found that offspring size had consistently positive effects on performance (estimated as post‐metamorphic growth, fecundity and reproductive output). We also found that manipulating the experience of offspring during the larval phase changed the way in which offspring size affects performance: offspring size affected post‐metamorphic growth when larvae were allowed to settle immediately but offspring size affected survival when larvae were forced to swim prior to settlement. Despite finding consistently positive effects of offspring size, early measures of the effect of offspring size resulted in the systematic underestimation of optimal offspring size. Surprisingly, the amount of variation in offspring performance that offspring size explained decreased with increasing time in the field but the steepness of the relationship between offspring size and performance actually increased. Our results suggest caution should be exercised when empirically examining offspring size effects – it may not be appropriate to assume that early measures are a good reflection of the actual relationship between offspring size and fitness.  相似文献   

3.
Convergent maternal care strategies in ungulates and macropods   总被引:1,自引:0,他引:1  
Mammals show extensive interspecific variation in the form of maternal care. Among ungulates, there is a dichotomy between species in which offspring follow the mother ("following" strategy) versus species in which offspring remain concealed ("hiding" strategy). Here we reveal that the same dichotomy exists among macropods (kangaroos, wallabies and allies). We test three traditional adaptive explanations and one new life history hypothesis, and find very similar patterns among both ungulates and macropods. The three traditional explanations that we tested were that a "following" strategy is associated with (1) open habitat, (2) large mothers, and (3) gregariousness. Our new life-history hypothesis is that a "following strategy" is associated with delayed weaning, and thus with the "slow" end of the slow-fast mammalian life-history continuum, because offspring devote resources to locomotion rather than rapid growth. Our comparative test strongly supports the habitat structure hypothesis and provides some support for this new delayed weaning hypothesis for both ungulates and macropods. We propose that sedentary young in closed habitats benefit energetically by having milk brought to them. In open habitats, predation pressure will select against hiding. Followers will suffer slower growth to independence. Taken together, therefore, our results provide the first quantitative evidence that macropods and ungulates are convergent with respect to interspecific variation in maternal care strategy. In both clades, differences between species in the form of parental care are due to a similar interaction between habitat, social behavior, and life history.  相似文献   

4.
Dynamic energy budget (DEB) theory offers a perspective on population ecology whose starting point is energy utilization by, and homeostasis within, individual organisms. It is natural to ask what it adds to the existing large body of individual-based ecological theory. We approach this question pragmatically--through detailed study of the individual physiology and population dynamics of the zooplankter Daphnia and its algal food. Standard DEB theory uses several state variables to characterize the state of an individual organism, thereby making the transition to population dynamics technically challenging, while ecologists demand maximally simple models that can be used in multi-scale modelling. We demonstrate that simpler representations of individual bioenergetics with a single state variable (size), and two life stages (juveniles and adults), contain sufficient detail on mass and energy budgets to yield good fits to data on growth, maturation and reproduction of individual Daphnia in response to food availability. The same simple representations of bioenergetics describe some features of Daphnia mortality, including enhanced mortality at low food that is not explicitly incorporated in the standard DEB model. Size-structured, population models incorporating this additional mortality component resolve some long-standing questions on stability and population cycles in Daphnia. We conclude that a bioenergetic model serving solely as a 'regression' connecting organismal performance to the history of its environment can rest on simpler representations than those of standard DEB. But there are associated costs with such pragmatism, notably loss of connection to theory describing interspecific variation in physiological rates. The latter is an important issue, as the type of detailed study reported here can only be performed for a handful of species.  相似文献   

5.
Environmental predictability is predicted to shape the evolution of life histories. Two key types of environmental predictability, seasonality and environmental colour, may influence life‐history evolution independently but formal considerations of both and how they relate to life history are exceedingly rare. Here, in a global biogeographical analysis of over 800 marine invertebrates, we explore the relationships between both forms of environmental predictability and three fundamental life‐history traits: location of larval development (aplanktonic vs. planktonic), larval developmental mode (feeding vs. non‐feeding) and offspring size. We found that both dispersal potential and offspring size related to environmental predictability, but the relationships depended on both the environmental factor as well as the type of predictability. Environments that were more seasonal in food availability had a higher prevalence of species with a planktonic larval stage. Future studies should consider both types of environmental predictability as each can strongly affect life‐history evolution.  相似文献   

6.
Geographical isolation can over time accumulate life‐history variation which can eventually lead to speciation. We used five species of Vaejovis scorpions that have been isolated from one another since the Pleistocene glaciation to identify if biogeographical patterns have allowed for the accumulation of life‐history variation among species. Gravid females were captured and brought back to the lab until giving birth. Once offspring had begun to disperse, measurements of female size, reproductive investment, offspring size, offspring number, and variation in offspring size were recorded. Differences in how each species allocated energy to these variables were analysed utilizing path analysis and structural equation modelling. Female and offspring size, litter size, and total litter mass differed among species, but relative energetic investment did not. Most significant differences among species were not present after removing the effect of female size, indicating that female size is a major source of life‐history variation. Path analyses indicated that there was no size–number trade‐off within any species and that each species allocates energy toward total litter mass differently. Additionally, as offspring size increased, the variation in offspring mass decreased. These results show that each species allocates the same relative amount of energy in different ways. The variation seen could be a response to environmental variability or uncertainty, a product of maternal effects, or caused by the sufficient accumulation of genetic differences due to geographical isolation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 715–727.  相似文献   

7.
Life-history theory predicts that as organisms approach the end of their life, they should increase their reproductive effort (RE). However, studies on mammals often find that measures of RE do not vary with maternal age. This might be because offspring have some control over energy transfer which may constrain adaptive variation in RE by mothers, particularly in eutherian mammals where placental function is primarily controlled by offspring. However, in marsupials, energy transfer is primarily by lactation and under maternal control, leaving marsupial mothers free to vary RE. Here, we provide the first analysis, to our knowledge, of age-specific RE in a marsupial, the common brushtail possum. RE, measured as the proportion of maternal mass lost during lactation, was strongly correlated with offspring mass as a yearling. Older females had higher RE, gave birth earlier in the season and were more likely to produce two offspring in a year. Females with high RE in one year were lighter at the beginning of the next breeding season. These results provide the clearest support yet for terminal RE in a mammal.  相似文献   

8.
9.
After birth, mammals acquire a community of bacteria in their gastro-intestinal tract, which harvests energy and provides nutrients for the host. Comparative studies of numerous terrestrial mammal hosts have identified host phylogeny, diet and gut morphology as primary drivers of the gut bacterial community composition. To date, marine mammals have been excluded from these comparative studies, yet they represent distinct examples of evolutionary history, diet and lifestyle traits. To provide an updated understanding of the gut bacterial community of mammals, we compared bacterial 16S rRNA gene sequence data generated from faecal material of 151 marine and terrestrial mammal hosts. This included 42 hosts from a marine habitat. When compared to terrestrial mammals, marine mammals clustered separately and displayed a significantly greater average relative abundance of the phylum Fusobacteria. The marine carnivores (Antarctic and Arctic seals) and the marine herbivore (dugong) possessed significantly richer gut bacterial community than terrestrial carnivores and terrestrial herbivores, respectively. This suggests that evolutionary history and dietary items specific to the marine environment may have resulted in a gut bacterial community distinct to that identified in terrestrial mammals. Finally we hypothesize that reduced marine trophic webs, whereby marine carnivores (and herbivores) feed directly on lower trophic levels, may expose this group to high levels of secondary metabolites and influence gut microbial community richness.  相似文献   

10.
Behavioural responses to reduce predation risk might cause demographic ‘costs of fear’. Costs differ among species, but a conceptual framework to understand this variation is lacking. We use a life‐history framework to tie together diverse traits and life stages to better understand interspecific variation in responses and costs. We used natural and experimental variation in predation risk to test phenotypic responses and associated demographic costs for 10 songbird species. Responses such as increased parental attentiveness yielded reduced development time and created benefits such as reduced predation probability. Yet, responses to increased risk also created demographic costs by reducing offspring production in the absence of direct predation. This cost of fear varied widely across species, but predictably with the probability of repeat breeding. Use of a life‐history framework can aid our understanding of potential demographic costs from predation, both from responses to perceived risk and from direct predation mortality.  相似文献   

11.
We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.  相似文献   

12.
13.
Three developments have implications for the future study of marine mammal behavior: 1) The number and affiliation of researchers have increased from a few individuals representing the interests of government or industry to many people conducting studies from a variety of points of view; 2) The interpretation of natural selection's operation on social behavior and life history patterns has shifted from emphasizing group to individual benefits; and 3) The passage of the Marine Mammal Protection Act has committed the United States to manage, research and protect marine mammal populations. Despite negative aspects of each development, the overall effect on marine mammal research will be positive. The combination of these changes and the interaction and collaboration of researchers with diverse orientations will spur new and varied research efforts and lead to a deeper understanding of marine mammals.  相似文献   

14.
Contrary to many separate sex systems, the evolutionary ecology of polyandry in simultaneous hermaphrodites, and in particular in those with internal fertilization, has received little attention. Recent studies on the promiscuous gastropod Chelidonura sandrana showed that offspring size, an important determinant of offspring performance in many marine invertebrates, varies with the number of different mating partners. However, the source of this differential allocation by mothers remained unclear. Using a quantitative genetic model, we here tested for parental effects on offspring size and the importance of ‘good gene’ effects on early life history traits. Our analysis revealed no significant sire but strong dam effects for all investigated traits. Moreover, embryo viability tended to increase with egg capsule volume, thus linking offspring size with offspring performance. Our findings suggest that in C. sandrana (1) differential allocation is a maternal effect in response to the number of different partners, and that (2) additive genetic variance is of negligible importance in early life history traits.  相似文献   

15.
Molecular techniques have revealed striking variation among bird species in the rates of extra-pair paternity (EPP) and intraspecific brood parasitism (IBP). In terms of the proportion of broods affected, rates of EPP and IBP vary across species from 0-95% and 0-50%, respectively. Despite a plethora of hypotheses and several careful comparative analyses, few robust correlates of this interspecific variation have been identified. One explanation for this shortfall is that most comparative studies have tended to focus on contemporary ecological factors and ignored fundamental differences in reproductive biology that evolved millions of years ago. We show that, for both EPP and IBP, over 50% of interspecific variation is due to differences among taxonomic families and orders. Therefore, we test hypotheses that predict interspecific variation in the rate of alternative reproductive strategies should be associated with differences in life history and the form of parental care. Our analyses largely support these predictions, with high rates of reproductive cheating being associated with 'fast' life histories. High EPP rates are associated with high rates of adult mortality and reduced paternal care. High IBP rates are associated with high-fecundity rates. These patterns remain intact whether we use species as independent data points or evolutionary contrasts based on either molecular or morphological phylogenies. These results are interpreted as supporting the idea that alternative reproductive strategies are most common in taxa in which the risks of retaliation are low. We suggest a hierarchical explanation for interspecific variation in the incidence of alternative reproductive strategies. Variation between major avian lineages in the EPP and IBP rates are determined by fundamental differences in life history and parental care that evolved many millions of years ago. Variation between populations or individuals of the same species, however, are more likely to be determined by differences in contemporary ecological and genetic factors.  相似文献   

16.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   

17.
Food availability is an important factor in the life histories of organisms because it is often limiting and thus can affect growth, mass change, reproduction, and behaviors such as thermoregulation, locomotion, and mating. Experimental studies in natural settings allow researchers to examine the effects of food on these parameters while animals are free to behave naturally. The wide variation among organisms in energy demands and among environmental food resources suggest that responses to changes in food availability may vary among organisms. Since most supplemental feeding field experiments have been conducted on species with high energy demands, we conducted a supplemental feeding study on free-ranging, female Western diamond-backed rattlesnakes (Crotalus atrox), a species with low energy demands and infrequent reproductive investment. Snakes were offered thawed rodents 1–4 times per week. Over two active seasons, we collected data on surface activity, home range size, growth, mass change, and reproduction of supplementally fed and control snakes. Fed and control snakes did not differ in surface activity levels (proportion of time encountered above versus below ground) or home range size. Fed snakes grew and gained mass faster, and had a dramatically higher occurrence of reproduction than control snakes. Also, fed snakes were in better body condition following reproduction than snakes that were not fed. However, litter characteristics such as offspring number and size were not increased by feeding, suggesting that these characteristics may be fixed. These data experimentally demonstrate that food availability can directly impact some life history traits (i.e., growth and reproduction for C. atrox), but not others (i.e., surface activity and home range size for C. atrox). The relationship between food availability and life history traits is affected in a complex way by ecological traits and physiological constraints, and thus interspecific variation in this relationship is likely to be high.  相似文献   

18.
We estimate the body sizes of direct ancestors of extant carnivores, and examine selected aspects of life history as a function not only of species' current size, but also of recent changes in size. Carnivore species that have undergone marked recent evolutionary size change show life history characteristics typically associated with species closer to the ancestral body size. Thus, phyletic giants tend to mature earlier and have larger litters of smaller offspring at shorter intervals than do species of the same body size that are not phyletic giants. Phyletic dwarfs, by contrast, have slower life histories than nondwarf species of the same body size. We discuss two possible mechanisms for the legacy of recent size change: lag (in which life history variables cannot evolve as quickly as body size, leading to species having the 'wrong' life history for their body size) and body size optimization (in which life history and hence body size evolve in response to changes in energy availability); at present, we cannot distinguish between these alternatives. Our finding that recent body size changes help explain residual variation around life history allometries shows that a more dynamic view of character change enables comparative studies to make more precise predictions about species traits in the context of their evolutionary background.  相似文献   

19.
The reasons why metabolic rate (B) scales allometrically with body mass (M) remain hotly debated. The field is dominated by correlational analyses of the relationship between B and M; these struggle to disentangle competing explanations because both B and M are confounded with ontogeny, life history, and ecology. Here, we overcome these problems by using an experimental approach to test among competing metabolic theories. We examined the scaling of B in size-manipulated and intact colonies of a bryozoan and show that B scales with M(0.5). To explain this, we apply a general model based on the dynamic energy budget theory for metabolic organization that predicts B on the basis of energy allocation to assimilation, maintenance, growth, and maturation. Uniquely, this model predicts the absolute value of B, emphasizes that there is no single scaling exponent of B, and demonstrates that a single model can explain the variation in B seen in nature.  相似文献   

20.
We describe a forward-time haploid reproduction model with a constant population size that includes life history characteristics common to many marine organisms. We develop coalescent approximations for sample gene genealogies under this model and use these to predict patterns of genetic variation. Depending on the behavior of the underlying parameters of the model, the approximations are coalescent processes with simultaneous multiple mergers or Kingman’s coalescent. Using simulations, we apply our model to data from the Pacific oyster and show that our model predicts the observed data very well. We also show that a fact which holds for Kingman’s coalescent and also for general coalescent trees–that the most-frequent allele at a biallelic locus is likely to be the ancestral allele–is not true for our model. Our work suggests that the power to detect a “sweepstakes effect” in a sample of DNA sequences from marine organisms depends on the sample size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号